These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34789335)

  • 1. DockStream: a docking wrapper to enhance de novo molecular design.
    Guo J; Janet JP; Bauer MR; Nittinger E; Giblin KA; Papadopoulos K; Voronov A; Patronov A; Engkvist O; Margreitter C
    J Cheminform; 2021 Nov; 13(1):89. PubMed ID: 34789335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study.
    Thomas M; Smith RT; O'Boyle NM; de Graaf C; Bender A
    J Cheminform; 2021 May; 13(1):39. PubMed ID: 33985583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmented Hill-Climb increases reinforcement learning efficiency for language-based de novo molecule generation.
    Thomas M; O'Boyle NM; Bender A; de Graaf C
    J Cheminform; 2022 Oct; 14(1):68. PubMed ID: 36192789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinvent 4: Modern AI-driven generative molecule design.
    Loeffler HH; He J; Tibo A; Janet JP; Voronov A; Mervin LH; Engkvist O
    J Cheminform; 2024 Feb; 16(1):20. PubMed ID: 38383444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of binding affinities in chemical space with generative pre-trained transformer and deep reinforcement learning.
    Xu X; Zhou J; Zhu C; Zhan Q; Li Z; Zhang R; Wang Y; Liao X; Gao X
    F1000Res; 2023; 12():757. PubMed ID: 38434657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Icolos: a workflow manager for structure-based post-processing of de novo generated small molecules.
    Moore JH; Bauer MR; Guo J; Patronov A; Engkvist O; Margreitter C
    Bioinformatics; 2022 Oct; 38(21):4951-4952. PubMed ID: 36073898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. REINVENT 2.0: An AI Tool for De Novo Drug Design.
    Blaschke T; Arús-Pous J; Chen H; Margreitter C; Tyrchan C; Engkvist O; Papadopoulos K; Patronov A
    J Chem Inf Model; 2020 Dec; 60(12):5918-5922. PubMed ID: 33118816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MolScore: a scoring, evaluation and benchmarking framework for generative models in de novo drug design.
    Thomas M; O'Boyle NM; Bender A; De Graaf C
    J Cheminform; 2024 May; 16(1):64. PubMed ID: 38816825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation.
    Xiong Y; Wang Y; Wang Y; Li C; Yusong P; Wu J; Wang Y; Gu L; Butch CJ
    J Comput Aided Mol Des; 2023 Nov; 37(11):507-517. PubMed ID: 37550462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generative Models Should at Least Be Able to Design Molecules That Dock Well: A New Benchmark.
    Ciepliński T; Danel T; Podlewska S; Jastrzȩbski S
    J Chem Inf Model; 2023 Jun; 63(11):3238-3247. PubMed ID: 37224003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing interactions to protein binding sites by integrating docking-scoring strategies into generative AI methods.
    Sauer S; Matter H; Hessler G; Grebner C
    Front Chem; 2022; 10():1012507. PubMed ID: 36339033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-Based
    Ma B; Terayama K; Matsumoto S; Isaka Y; Sasakura Y; Iwata H; Araki M; Okuno Y
    J Chem Inf Model; 2021 Jul; 61(7):3304-3313. PubMed ID: 34242036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generative Adversarial Networks for De Novo Molecular Design.
    Lee YJ; Kahng H; Kim SB
    Mol Inform; 2021 Oct; 40(10):e2100045. PubMed ID: 34622551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Has Artificial Intelligence Impacted Drug Discovery?
    Patronov A; Papadopoulos K; Engkvist O
    Methods Mol Biol; 2022; 2390():153-176. PubMed ID: 34731468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LibINVENT: Reaction-based Generative Scaffold Decoration for
    Fialková V; Zhao J; Papadopoulos K; Engkvist O; Bjerrum EJ; Kogej T; Patronov A
    J Chem Inf Model; 2022 May; 62(9):2046-2063. PubMed ID: 34460269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAOMInext - Synthetically feasible fragment growing in a structure-based design context.
    Sommer K; Flachsenberg F; Rarey M
    Eur J Med Chem; 2019 Feb; 163():747-762. PubMed ID: 30576905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LigTMap: ligand and structure-based target identification and activity prediction for small molecular compounds.
    Shaikh F; Tai HK; Desai N; Siu SWI
    J Cheminform; 2021 Jun; 13(1):44. PubMed ID: 34112240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-Aided Drug Discovery and Design: Recent Advances and Future Prospects.
    Talevi A
    Methods Mol Biol; 2024; 2714():1-20. PubMed ID: 37676590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying natural compounds as multi-target-directed ligands against Alzheimer's disease: an in silico approach.
    Ambure P; Bhat J; Puzyn T; Roy K
    J Biomol Struct Dyn; 2019 Mar; 37(5):1282-1306. PubMed ID: 29578387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.