These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 34790217)

  • 1. The World of Algae Reveals a Broad Variety of Cryptochrome Properties and Functions.
    Petersen J; Rredhi A; Szyttenholm J; Oldemeyer S; Kottke T; Mittag M
    Front Plant Sci; 2021; 12():766509. PubMed ID: 34790217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. News about cryptochrome photoreceptors in algae.
    Beel B; Müller N; Kottke T; Mittag M
    Plant Signal Behav; 2013 Feb; 8(2):e22870. PubMed ID: 23154511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions.
    Kottke T; Oldemeyer S; Wenzel S; Zou Y; Mittag M
    J Plant Physiol; 2017 Oct; 217():4-14. PubMed ID: 28619534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In the grip of algal genomics.
    Grossman AR
    Adv Exp Med Biol; 2007; 616():54-76. PubMed ID: 18161491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of UV-B radiation in aquatic and terrestrial ecosystems--an experimental and functional analysis of the evolution of UV-absorbing compounds.
    Rozema J; Björn LO; Bornman JF; Gaberscik A; Häder DP; Trost T; Germ M; Klisch M; Gröniger A; Sinha RP; Lebert M; He YY; Buffoni-Hall R; de Bakker NV; van de Staaij J; Meijkamp BB
    J Photochem Photobiol B; 2002 Feb; 66(1):2-12. PubMed ID: 11849977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes.
    Rockwell NC; Lagarias JC; Bhattacharya D
    Front Ecol Evol; 2014; 2(66):. PubMed ID: 25729749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms.
    Fortunato AE; Annunziata R; Jaubert M; Bouly JP; Falciatore A
    J Plant Physiol; 2015 Jan; 172():42-54. PubMed ID: 25087009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and evolutionary aspects of algal blue light receptors of the cryptochrome and aureochrome type.
    Essen LO; Franz S; Banerjee A
    J Plant Physiol; 2017 Oct; 217():27-37. PubMed ID: 28756992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.
    Chan CX; Reyes-Prieto A; Bhattacharya D
    PLoS One; 2011; 6(12):e29138. PubMed ID: 22195008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii.
    Beel B; Prager K; Spexard M; Sasso S; Weiss D; Müller N; Heinnickel M; Dewez D; Ikoma D; Grossman AR; Kottke T; Mittag M
    Plant Cell; 2012 Jul; 24(7):2992-3008. PubMed ID: 22773746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic eukaryotes unite: endosymbiosis connects the dots.
    Bhattacharya D; Yoon HS; Hackett JD
    Bioessays; 2004 Jan; 26(1):50-60. PubMed ID: 14696040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching.
    Roach T; Miller R; Aigner S; Kranner I
    Ann Bot; 2015 Sep; 116(4):519-27. PubMed ID: 25878139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Resolved Infrared and Visible Spectroscopy on Cryptochrome aCRY: Basis for Red Light Reception.
    Oldemeyer S; Mittag M; Kottke T
    Biophys J; 2019 Aug; 117(3):490-499. PubMed ID: 31326107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY.
    Oldemeyer S; Franz S; Wenzel S; Essen LO; Mittag M; Kottke T
    J Biol Chem; 2016 Jul; 291(27):14062-14071. PubMed ID: 27189948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels.
    Juhas M; von Zadow A; Spexard M; Schmidt M; Kottke T; Büchel C
    FEBS J; 2014 May; 281(9):2299-311. PubMed ID: 24628952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
    Cavalier-Smith T
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of solar UV-B radiation on aquatic ecosystems.
    Hader DP
    Adv Space Res; 2000; 26(12):2029-40. PubMed ID: 12038489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae.
    Cui H; Yu X; Wang Y; Cui Y; Li X; Liu Z; Qin S
    BMC Genomics; 2013 Jul; 14():457. PubMed ID: 23834441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cryptochrome-photolyase protein family in diatoms.
    König S; Juhas M; Jäger S; Kottke T; Büchel C
    J Plant Physiol; 2017 Oct; 217():15-19. PubMed ID: 28720252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryptochrome-mediated blue-light signal contributes to carotenoids biosynthesis in microalgae.
    Zhang Z; Han T; Sui J; Wang H
    Front Microbiol; 2022; 13():1083387. PubMed ID: 36620041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.