BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34790220)

  • 1. A Network-Based Methodology to Identify Subnetwork Markers for Diagnosis and Prognosis of Colorectal Cancer.
    Al-Harazi O; Kaya IH; El Allali A; Colak D
    Front Genet; 2021; 12():721949. PubMed ID: 34790220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic data analysis coupled with copy number aberrations reveals a blood-based 17-gene signature for diagnosis and prognosis of patients with colorectal cancer.
    Kaya IH; Al-Harazi O; Colak D
    Front Genet; 2022; 13():1031086. PubMed ID: 36685857
    [No Abstract]   [Full Text] [Related]  

  • 5. Simultaneous identification of robust synergistic subnetwork markers for effective cancer prognosis.
    Khunlertgit N; Yoon BJ
    EURASIP J Bioinform Syst Biol; 2014 Dec; 2014():19. PubMed ID: 28194169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of diagnostic subnetwork markers for cancer in human protein-protein interaction network.
    Su J; Yoon BJ; Dougherty ER
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S8. PubMed ID: 20946619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smell Detection Agent Optimisation Framework and Systems Biology Approach to Detect Dys-Regulated Subnetwork in Cancer Data.
    Sivan SL; Sukumara Pillai VCS
    Biomolecules; 2021 Dec; 12(1):. PubMed ID: 35053185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of key genes for predicting colorectal cancer prognosis by integrated bioinformatics analysis.
    Dai GP; Wang LP; Wen YQ; Ren XQ; Zuo SG
    Oncol Lett; 2020 Jan; 19(1):388-398. PubMed ID: 31897151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of hub subnetwork based on topological features of genes in breast cancer.
    Zhuang DY; Jiang L; He QQ; Zhou P; Yue T
    Int J Mol Med; 2015 Mar; 35(3):664-74. PubMed ID: 25573623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracting a few functionally reproducible biomarkers to build robust subnetwork-based classifiers for the diagnosis of cancer.
    Zhang L; Li S; Hao C; Hong G; Zou J; Zhang Y; Li P; Guo Z
    Gene; 2013 Sep; 526(2):232-8. PubMed ID: 23707927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods.
    Tuo Y; An N; Zhang M
    Mol Med Rep; 2018 Mar; 17(3):4281-4290. PubMed ID: 29328377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis.
    Chen L; Lu D; Sun K; Xu Y; Hu P; Li X; Xu F
    Gene; 2019 Apr; 692():119-125. PubMed ID: 30654001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved supervised prediction of aging-related genes via weighted dynamic network analysis.
    Li Q; Newaz K; Milenković T
    BMC Bioinformatics; 2021 Oct; 22(1):520. PubMed ID: 34696741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GTA: a game theoretic approach to identifying cancer subnetwork markers.
    Farahmand S; Goliaei S; Ansari-Pour N; Razaghi-Moghadam Z
    Mol Biosyst; 2016 Mar; 12(3):818-25. PubMed ID: 26750920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of a SVM classifier to predict recurrence of ovarian cancer.
    Zhou J; Li L; Wang L; Li X; Xing H; Cheng L
    Mol Med Rep; 2018 Oct; 18(4):3589-3598. PubMed ID: 30106117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the circRNA-miRNA-mRNA regulatory network and its prognostic effect in colorectal cancer.
    Yin TF; Zhao DY; Zhou YC; Wang QQ; Yao SK
    World J Clin Cases; 2021 Jun; 9(18):4520-4541. PubMed ID: 34222420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-omics analyses of human colorectal cancer revealed three mitochondrial genes potentially associated with poor outcomes of patients.
    Zhang W; Lin L; Xia L; Cai W; Dai W; Zou C; Yin L; Tang D; Xu Y; Dai Y
    J Transl Med; 2021 Jun; 19(1):273. PubMed ID: 34174878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments.
    Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J
    Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated transcriptomic analysis of distance-related field cancerization in rectal cancer patients.
    Guo H; Zeng W; Feng L; Yu X; Li P; Zhang K; Zhou Z; Cheng S
    Oncotarget; 2017 Sep; 8(37):61107-61117. PubMed ID: 28977850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Network Analysis of Multiple Myeloma Related Gene Signatures.
    Liu Y; Yu H; Yoo S; Lee E; Laganà A; Parekh S; Schadt EE; Wang L; Zhu J
    Cancers (Basel); 2019 Sep; 11(10):. PubMed ID: 31569720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.