BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 34791014)

  • 41. Multi-omics data integration considerations and study design for biological systems and disease.
    Graw S; Chappell K; Washam CL; Gies A; Bird J; Robeson MS; Byrum SD
    Mol Omics; 2021 Apr; 17(2):170-185. PubMed ID: 33347526
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integrated multi-omics analysis of ovarian cancer using variational autoencoders.
    Hira MT; Razzaque MA; Angione C; Scrivens J; Sawan S; Sarker M
    Sci Rep; 2021 Mar; 11(1):6265. PubMed ID: 33737557
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation and comparison of multi-omics data integration methods for cancer subtyping.
    Duan R; Gao L; Gao Y; Hu Y; Xu H; Huang M; Song K; Wang H; Dong Y; Jiang C; Zhang C; Jia S
    PLoS Comput Biol; 2021 Aug; 17(8):e1009224. PubMed ID: 34383739
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data.
    Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y
    Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197
    [TBL] [Abstract][Full Text] [Related]  

  • 45. OmiEmbed: A Unified Multi-Task Deep Learning Framework for Multi-Omics Data.
    Zhang X; Xing Y; Sun K; Guo Y
    Cancers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207255
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using machine learning approaches for multi-omics data analysis: A review.
    Reel PS; Reel S; Pearson E; Trucco E; Jefferson E
    Biotechnol Adv; 2021; 49():107739. PubMed ID: 33794304
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cancer subtyping with heterogeneous multi-omics data via hierarchical multi-kernel learning.
    Wei Y; Li L; Zhao X; Yang H; Sa J; Cao H; Cui Y
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36433785
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine.
    Grapov D; Fahrmann J; Wanichthanarak K; Khoomrung S
    OMICS; 2018 Oct; 22(10):630-636. PubMed ID: 30124358
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-omics integration for neuroblastoma clinical endpoint prediction.
    Francescatto M; Chierici M; Rezvan Dezfooli S; Zandonà A; Jurman G; Furlanello C
    Biol Direct; 2018 Apr; 13(1):5. PubMed ID: 29615097
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data.
    El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deep learning in omics: a survey and guideline.
    Zhang Z; Zhao Y; Liao X; Shi W; Li K; Zou Q; Peng S
    Brief Funct Genomics; 2019 Feb; 18(1):41-57. PubMed ID: 30265280
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational Analysis of Phosphoproteomics Data in Multi-Omics Cancer Studies.
    Mantini G; Pham TV; Piersma SR; Jimenez CR
    Proteomics; 2021 Feb; 21(3-4):e1900312. PubMed ID: 32875713
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CLCLSA: Cross-omics linked embedding with contrastive learning and self attention for integration with incomplete multi-omics data.
    Zhao C; Liu A; Zhang X; Cao X; Ding Z; Sha Q; Shen H; Deng HW; Zhou W
    Comput Biol Med; 2024 Mar; 170():108058. PubMed ID: 38295477
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data.
    Poirion OB; Jing Z; Chaudhary K; Huang S; Garmire LX
    Genome Med; 2021 Jul; 13(1):112. PubMed ID: 34261540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Statistical and Machine-Learning Analyses in Nutritional Genomics Studies.
    Khorraminezhad L; Leclercq M; Droit A; Bilodeau JF; Rudkowska I
    Nutrients; 2020 Oct; 12(10):. PubMed ID: 33066636
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Architectures and accuracy of artificial neural network for disease classification from omics data.
    Yu H; Samuels DC; Zhao YY; Guo Y
    BMC Genomics; 2019 Mar; 20(1):167. PubMed ID: 30832569
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data.
    Zhao C; Liu A; Zhang X; Cao X; Ding Z; Sha Q; Shen H; Deng HW; Zhou W
    ArXiv; 2023 Apr; ():. PubMed ID: 37090237
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Integration of multi-omics data using adaptive graph learning and attention mechanism for patient classification and biomarker identification.
    Ouyang D; Liang Y; Li L; Ai N; Lu S; Yu M; Liu X; Xie S
    Comput Biol Med; 2023 Sep; 164():107303. PubMed ID: 37586201
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data.
    Zhao C; Liu A; Zhang X; Cao X; Ding Z; Sha Q; Shen H; Deng HW; Zhou W
    Res Sq; 2023 May; ():. PubMed ID: 37205427
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dimension reduction techniques for the integrative analysis of multi-omics data.
    Meng C; Zeleznik OA; Thallinger GG; Kuster B; Gholami AM; Culhane AC
    Brief Bioinform; 2016 Jul; 17(4):628-41. PubMed ID: 26969681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.