These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34791035)

  • 41. Evidence synthesis for constructing directed acyclic graphs (ESC-DAGs): a novel and systematic method for building directed acyclic graphs.
    Ferguson KD; McCann M; Katikireddi SV; Thomson H; Green MJ; Smith DJ; Lewsey JD
    Int J Epidemiol; 2020 Feb; 49(1):322-329. PubMed ID: 31325312
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adjusting for indirectly measured confounding using large-scale propensity score.
    Zhang L; Wang Y; Schuemie MJ; Blei DM; Hripcsak G
    J Biomed Inform; 2022 Oct; 134():104204. PubMed ID: 36108816
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Results on differential and dependent measurement error of the exposure and the outcome using signed directed acyclic graphs.
    VanderWeele TJ; HernĂ¡n MA
    Am J Epidemiol; 2012 Jun; 175(12):1303-10. PubMed ID: 22569106
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using directed acyclic graphs to guide analyses of neighbourhood health effects: an introduction.
    Fleischer NL; Diez Roux AV
    J Epidemiol Community Health; 2008 Sep; 62(9):842-6. PubMed ID: 18701738
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The control outcome calibration approach for causal inference with unobserved confounding.
    Tchetgen Tchetgen E
    Am J Epidemiol; 2014 Mar; 179(5):633-40. PubMed ID: 24363326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A nontechnical explanation of the counterfactual definition of confounding.
    Bours MJL
    J Clin Epidemiol; 2020 May; 121():91-100. PubMed ID: 32068101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predictive models aren't for causal inference.
    Arif S; MacNeil MA
    Ecol Lett; 2022 Aug; 25(8):1741-1745. PubMed ID: 35672133
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Summary of relationships between exchangeability, biasing paths and bias.
    Flanders WD; Eldridge RC
    Eur J Epidemiol; 2015 Oct; 30(10):1089-99. PubMed ID: 24894825
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using computable knowledge mined from the literature to elucidate confounders for EHR-based pharmacovigilance.
    Malec SA; Wei P; Bernstam EV; Boyce RD; Cohen T
    J Biomed Inform; 2021 May; 117():103719. PubMed ID: 33716168
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methodological Challenges When Studying Distance to Care as an Exposure in Health Research.
    Caniglia EC; Zash R; Swanson SA; Wirth KE; Diseko M; Mayondi G; Lockman S; Mmalane M; Makhema J; Dryden-Peterson S; Kponee-Shovein KZ; John O; Murray EJ; Shapiro RL
    Am J Epidemiol; 2019 Sep; 188(9):1674-1681. PubMed ID: 31107529
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robust causal inference using directed acyclic graphs: the R package 'dagitty'.
    Textor J; van der Zander B; Gilthorpe MS; Liskiewicz M; Ellison GT
    Int J Epidemiol; 2016 Dec; 45(6):1887-1894. PubMed ID: 28089956
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Application of directed acyclic graphs in control of confounding].
    Xiang R; Dai WJ; Xiong Y; Wu X; Yang YF; Wang L; Dai ZH; Li J; Liu AZ
    Zhonghua Liu Xing Bing Xue Za Zhi; 2016 Jul; 37(7):1035-8. PubMed ID: 27453119
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations.
    Tennant PWG; Murray EJ; Arnold KF; Berrie L; Fox MP; Gadd SC; Harrison WJ; Keeble C; Ranker LR; Textor J; Tomova GD; Gilthorpe MS; Ellison GTH
    Int J Epidemiol; 2021 May; 50(2):620-632. PubMed ID: 33330936
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Directed acyclic graphs and causal thinking in clinical risk prediction modeling.
    Piccininni M; Konigorski S; Rohmann JL; Kurth T
    BMC Med Res Methodol; 2020 Jul; 20(1):179. PubMed ID: 32615926
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reducing bias in experimental ecology through directed acyclic graphs.
    Arif S; Massey MDB
    Ecol Evol; 2023 Mar; 13(3):e9947. PubMed ID: 37006894
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Instrumental Variable Analyses and Selection Bias.
    Canan C; Lesko C; Lau B
    Epidemiology; 2017 May; 28(3):396-398. PubMed ID: 28169934
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A review of covariate selection for non-experimental comparative effectiveness research.
    Sauer BC; Brookhart MA; Roy J; VanderWeele T
    Pharmacoepidemiol Drug Saf; 2013 Nov; 22(11):1139-45. PubMed ID: 24006330
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Confounding, causality, and confusion: the role of intermediate variables in interpreting observational studies in obstetrics.
    Ananth CV; Schisterman EF
    Am J Obstet Gynecol; 2017 Aug; 217(2):167-175. PubMed ID: 28427805
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Directed acyclic graphs: a tool for causal studies in paediatrics.
    Williams TC; Bach CC; Matthiesen NB; Henriksen TB; Gagliardi L
    Pediatr Res; 2018 Oct; 84(4):487-493. PubMed ID: 29967527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Directed acyclic graphs in clinical research.
    Dekkers OM; Laugesen K; Groenwold RHH
    Eur J Endocrinol; 2024 Mar; 190(4):E5-E7. PubMed ID: 38529789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.