BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 34791191)

  • 1. Split down the middle: studying arbuscular mycorrhizal and ectomycorrhizal symbioses using split-root assays.
    Kafle A; Frank HER; Rose BD; Garcia K
    J Exp Bot; 2022 Mar; 73(5):1288-1300. PubMed ID: 34791191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity and spatial structure of belowground plant-fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants.
    Toju H; Sato H; Tanabe AS
    PLoS One; 2014; 9(1):e86566. PubMed ID: 24489745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.
    Chen W; Koide RT; Adams TS; DeForest JL; Cheng L; Eissenstat DM
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8741-6. PubMed ID: 27432986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Roles of Phosphorus and Nitrogen Nutrient Transporters in the Arbuscular Mycorrhizal Symbiosis.
    Rui W; Mao Z; Li Z
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi.
    Holste EK; Kobe RK; Gehring CA
    Mycorrhiza; 2017 Apr; 27(3):211-223. PubMed ID: 27838856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes.
    Tedersoo L; Bahram M
    Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1857-1880. PubMed ID: 31270944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in mechanisms of nutrient exchange between mycorrhizal fungi and host plants].
    Feng H; Meng PP; Dou Q; Zhang SX; Wang HH; Wang CY
    Ying Yong Sheng Tai Xue Bao; 2019 Oct; 30(10):3596-3604. PubMed ID: 31621248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling in the arbuscular mycorrhizal symbiosis.
    Harrison MJ
    Annu Rev Microbiol; 2005; 59():19-42. PubMed ID: 16153162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neglected alliance in battles against parasitic plants: arbuscular mycorrhizal and rhizobial symbioses alleviate damage to a legume host by root hemiparasitic Pedicularis species.
    Sui XL; Zhang T; Tian YQ; Xue RJ; Li AR
    New Phytol; 2019 Jan; 221(1):470-481. PubMed ID: 30078224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude.
    Khan MH; Meghvansi MK; Gupta R; Veer V
    J Plant Physiol; 2015 Sep; 189():105-12. PubMed ID: 26555273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rulebook for peptide control of legume-microbe endosymbioses.
    Roy S; Müller LM
    Trends Plant Sci; 2022 Sep; 27(9):870-889. PubMed ID: 35246381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume-rhizobium symbioses.
    Banasiak J; Jamruszka T; Murray JD; Jasiński M
    Plant Physiol; 2021 Dec; 187(4):2071-2091. PubMed ID: 34618047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unearthing the plant-microbe quid pro quo in root associations with beneficial fungi.
    Almario J; Fabiańska I; Saridis G; Bucher M
    New Phytol; 2022 Jun; 234(6):1967-1976. PubMed ID: 35239199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks.
    Averill C; Dietze MC; Bhatnagar JM
    Glob Chang Biol; 2018 Oct; 24(10):4544-4553. PubMed ID: 30051940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global imprint of mycorrhizal fungi on whole-plant nutrient economics.
    Averill C; Bhatnagar JM; Dietze MC; Pearse WD; Kivlin SN
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23163-23168. PubMed ID: 31659035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.
    Lenoir I; Fontaine J; Lounès-Hadj Sahraoui A
    Phytochemistry; 2016 Mar; 123():4-15. PubMed ID: 26803396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses.
    Raudaskoski M; Kothe E
    Mycorrhiza; 2015 May; 25(4):243-52. PubMed ID: 25260351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems.
    Shi J; Wang X; Wang E
    Annu Rev Plant Biol; 2023 May; 74():569-607. PubMed ID: 36854473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Herbivore-driven disruption of arbuscular mycorrhizal carbon-for-nutrient exchange is ameliorated by neighboring plants.
    Durant E; Hoysted GA; Howard N; Sait SM; Childs DZ; Johnson D; Field KJ
    Curr Biol; 2023 Jun; 33(12):2566-2573.e4. PubMed ID: 37290441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular nutrient element localization and enrichment in ecto- and arbuscular mycorrhizas of field-grown beech and ash trees indicate functional differences.
    Seven J; Polle A
    PLoS One; 2014; 9(12):e114672. PubMed ID: 25486253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.