These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34791202)

  • 1. The distribution of mutational effects on fitness in Caenorhabditis elegans inferred from standing genetic variation.
    Gilbert KJ; Zdraljevic S; Cook DE; Cutter AD; Andersen EC; Baer CF
    Genetics; 2022 Jan; 220(1):. PubMed ID: 34791202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of selfing is accompanied by reduced efficacy of selection and purging of deleterious mutations.
    Arunkumar R; Ness RW; Wright SI; Barrett SC
    Genetics; 2015 Mar; 199(3):817-29. PubMed ID: 25552275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring Genome-Wide Correlations of Mutation Fitness Effects between Populations.
    Huang X; Fortier AL; Coffman AJ; Struck TJ; Irby MN; James JE; León-Burguete JE; Ragsdale AP; Gutenkunst RN
    Mol Biol Evol; 2021 Sep; 38(10):4588-4602. PubMed ID: 34043790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purging deleterious mutations under self fertilization: paradoxical recovery in fitness with increasing mutation rate in Caenorhabditis elegans.
    Morran LT; Ohdera AH; Phillips PC
    PLoS One; 2010 Dec; 5(12):e14473. PubMed ID: 21217820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-genome evolutionary histories of selfing, splitting, and selection in Caenorhabditis.
    Thomas CG; Wang W; Jovelin R; Ghosh R; Lomasko T; Trinh Q; Kruglyak L; Stein LD; Cutter AD
    Genome Res; 2015 May; 25(5):667-78. PubMed ID: 25783854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the potential for extinction by Muller's ratchet in Caenorhabditis elegans.
    Loewe L; Cutter AD
    BMC Evol Biol; 2008 Apr; 8():125. PubMed ID: 18447910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of non-neutral synonymous mutations when inferring selection on non-synonymous mutations.
    Zurita AMI; Kyriazis CC; Lohmueller KE
    bioRxiv; 2024 Feb; ():. PubMed ID: 38370782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of the distribution of fitness effects of mutations is affected by single nucleotide polymorphism filtering methods, sample size and population structure.
    Andersson BA; Zhao W; Haller BC; Brännström Å; Wang XR
    Mol Ecol Resour; 2023 Oct; 23(7):1589-1603. PubMed ID: 37340611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples.
    Kim BY; Huber CD; Lohmueller KE
    Genetics; 2017 May; 206(1):345-361. PubMed ID: 28249985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous mutational and standing genetic (co)variation at dinucleotide microsatellites in Caenorhabditis briggsae and Caenorhabditis elegans.
    Phillips N; Salomon M; Custer A; Ostrow D; Baer CF
    Mol Biol Evol; 2009 Mar; 26(3):659-69. PubMed ID: 19109257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of new mutations on fitness: insights from models and data.
    Bataillon T; Bailey SF
    Ann N Y Acad Sci; 2014 Jul; 1320(1):76-92. PubMed ID: 24891070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species.
    Daigle A; Johri P
    bioRxiv; 2024 May; ():. PubMed ID: 38370745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies.
    Keightley PD; Eyre-Walker A
    Genetics; 2007 Dec; 177(4):2251-61. PubMed ID: 18073430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing mutational and standing genetic variability for fitness and size in Caenorhabditis briggsae and C. elegans.
    Salomon MP; Ostrow D; Phillips N; Blanton D; Bour W; Keller TE; Levy L; Sylvestre T; Upadhyay A; Baer CF
    Genetics; 2009 Oct; 183(2):685-92, 1SI-19SI. PubMed ID: 19667133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring the distribution of fitness effects of spontaneous mutations in Chlamydomonas reinhardtii.
    Böndel KB; Kraemer SA; Samuels T; McClean D; Lachapelle J; Ness RW; Colegrave N; Keightley PD
    PLoS Biol; 2019 Jun; 17(6):e3000192. PubMed ID: 31242179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionarily stable distribution of fitness effects.
    Rice DP; Good BH; Desai MM
    Genetics; 2015 May; 200(1):321-9. PubMed ID: 25762525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The opportunity for balancing selection in experimental populations of Caenorhabditis elegans.
    Chelo IM; Teotónio H
    Evolution; 2013 Jan; 67(1):142-56. PubMed ID: 23289568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genome-wide view of Caenorhabditis elegans base-substitution mutation processes.
    Denver DR; Dolan PC; Wilhelm LJ; Sung W; Lucas-Lledó JI; Howe DK; Lewis SC; Okamoto K; Thomas WK; Lynch M; Baer CF
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16310-4. PubMed ID: 19805298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the Full Distribution of Fitness Effects of New Amino Acid Mutations Across Great Apes.
    Castellano D; Macià MC; Tataru P; Bataillon T; Munch K
    Genetics; 2019 Nov; 213(3):953-966. PubMed ID: 31488516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Between but Not Within-Species Variation in the Distribution of Fitness Effects.
    James J; Kastally C; Budde KB; González-Martínez SC; Milesi P; Pyhäjärvi T; Lascoux M;
    Mol Biol Evol; 2023 Nov; 40(11):. PubMed ID: 37832225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.