BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34791351)

  • 1. A periplasmic cupredoxin with a green CuT1.5 center is involved in bacterial copper tolerance.
    Durand A; Fouesnard M; Bourbon ML; Steunou AS; Lojou E; Dorlet P; Ouchane S
    Metallomics; 2021 Dec; 13(12):. PubMed ID: 34791351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The green cupredoxin CopI is a multicopper protein able to oxidize Cu(I).
    Rossotti M; Arceri D; Mansuelle P; Bornet O; Durand A; Ouchane S; Launay H; Dorlet P
    J Inorg Biochem; 2024 May; 254():112503. PubMed ID: 38364337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. c-Type Cytochrome Assembly Is a Key Target of Copper Toxicity within the Bacterial Periplasm.
    Durand A; Azzouzi A; Bourbon ML; Steunou AS; Liotenberg S; Maeshima A; Astier C; Argentini M; Saito S; Ouchane S
    mBio; 2015 Sep; 6(5):e01007-15. PubMed ID: 26396241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.
    Roger M; Biaso F; Castelle CJ; Bauzan M; Chaspoul F; Lojou E; Sciara G; Caffarri S; Giudici-Orticoni MT; Ilbert M
    PLoS One; 2014; 9(6):e98941. PubMed ID: 24932914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basic requirements for a metal-binding site in a protein: the influence of loop shortening on the cupredoxin azurin.
    Li C; Yanagisawa S; Martins BM; Messerschmidt A; Banfield MJ; Dennison C
    Proc Natl Acad Sci U S A; 2006 May; 103(19):7258-63. PubMed ID: 16651527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of copper ligand mutations on a cupredoxin with a green copper center.
    Roger M; Sciara G; Biaso F; Lojou E; Wang X; Bauzan M; Giudici-Orticoni MT; Vila AJ; Ilbert M
    Biochim Biophys Acta Bioenerg; 2017 May; 1858(5):351-359. PubMed ID: 28214520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH and ligand binding on the structure of the Cu site of the Met121Glu mutant of azurin from Pseudomonas aeruginosa.
    Strange RW; Murphy LM; Karlsson BG; Reinhammar B; Hasnain SS
    Biochemistry; 1996 Dec; 35(50):16391-8. PubMed ID: 8973215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orchestrating copper binding: structure and variations on the cupredoxin fold.
    Guo J; Fisher OS
    J Biol Inorg Chem; 2022 Sep; 27(6):529-540. PubMed ID: 35994119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of copper incorporation into a biosynthetic purple Cu(A) azurin: characterization of red, blue, and a new intermediate species.
    Wilson TD; Savelieff MG; Nilges MJ; Marshall NM; Lu Y
    J Am Chem Soc; 2011 Dec; 133(51):20778-92. PubMed ID: 21985501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The selenocysteine-substituted blue copper center: spectroscopic investigations of Cys112SeCys Pseudomonas aeruginosa azurin.
    Ralle M; Berry SM; Nilges MJ; Gieselman MD; van der Donk WA; Lu Y; Blackburn NJ
    J Am Chem Soc; 2004 Jun; 126(23):7244-56. PubMed ID: 15186162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo design and characterization of copper metallopeptides inspired by native cupredoxins.
    Plegaria JS; Duca M; Tard C; Friedlander TJ; Deb A; Penner-Hahn JE; Pecoraro VL
    Inorg Chem; 2015 Oct; 54(19):9470-82. PubMed ID: 26381361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa.
    Raimunda D; Padilla-Benavides T; Vogt S; Boutigny S; Tomkinson KN; Finney LA; Argüello JM
    Metallomics; 2013 Feb; 5(2):144-51. PubMed ID: 23354150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Two-Component System CopRS Maintains Subfemtomolar Levels of Free Copper in the Periplasm of Pseudomonas aeruginosa Using a Phosphatase-Based Mechanism.
    Novoa-Aponte L; Xu C; Soncini FC; Argüello JM
    mSphere; 2020 Dec; 5(6):. PubMed ID: 33361129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin delocalization over type zero copper.
    Potapov A; Lancaster KM; Richards JH; Gray HB; Goldfarb D
    Inorg Chem; 2012 Apr; 51(7):4066-75. PubMed ID: 22432748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evidence for a link among cupredoxins: red, blue, and purple copper transformations in nitrous oxide reductase.
    Savelieff MG; Wilson TD; Elias Y; Nilges MJ; Garner DK; Lu Y
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):7919-24. PubMed ID: 18535143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing copper ligands in denatured Pseudomonas aeruginosa azurin: unfolding His117Gly and His46Gly mutants.
    Pozdnyakova I; Guidry J; Wittung-Stafshede P
    J Biol Inorg Chem; 2001 Feb; 6(2):182-8. PubMed ID: 11293412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal binding to Pseudomonas aeruginosa azurin: a kinetic investigation.
    Naro F; Tordi MG; Giacometti GM; Tomei F; Timperio AM; Zolla L
    Z Naturforsch C J Biosci; 2000; 55(5-6):347-54. PubMed ID: 10928545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of hydrogen bonding at the active site of a cupredoxin: the Phe114Pro azurin variant.
    Yanagisawa S; Banfield MJ; Dennison C
    Biochemistry; 2006 Jul; 45(29):8812-22. PubMed ID: 16846224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbene in Cupredoxin Protein Scaffolds: Replacement of a Histidine Ligand in the Active Site Substantially Alters Copper Redox Properties.
    Planchestainer M; Segaud N; Shanmugam M; McMaster J; Paradisi F; Albrecht M
    Angew Chem Int Ed Engl; 2018 Aug; 57(33):10677-10682. PubMed ID: 29949236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of copper in folding and stability of cupredoxin-like copper-carrier protein CopC.
    Hussain F; Sedlak E; Wittung-Stafshede P
    Arch Biochem Biophys; 2007 Nov; 467(1):58-66. PubMed ID: 17889826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.