BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34791389)

  • 1. Uncertainty-aware and interpretable evaluation of Cas9-gRNA and Cas12a-gRNA specificity for fully matched and partially mismatched targets with Deep Kernel Learning.
    Kirillov B; Savitskaya E; Panov M; Ogurtsov AY; Shabalina SA; Koonin EV; Severinov KV
    Nucleic Acids Res; 2022 Jan; 50(2):e11. PubMed ID: 34791389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters.
    Alkan F; Wenzel A; Anthon C; Havgaard JH; Gorodkin J
    Genome Biol; 2018 Oct; 19(1):177. PubMed ID: 30367669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning.
    Xiang X; Corsi GI; Anthon C; Qu K; Pan X; Liang X; Han P; Dong Z; Liu L; Zhong J; Ma T; Wang J; Zhang X; Jiang H; Xu F; Liu X; Xu X; Wang J; Yang H; Bolund L; Church GM; Lin L; Gorodkin J; Luo Y
    Nat Commun; 2021 May; 12(1):3238. PubMed ID: 34050182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning.
    Konstantakos V; Nentidis A; Krithara A; Paliouras G
    Nucleic Acids Res; 2022 Apr; 50(7):3616-3637. PubMed ID: 35349718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 Guide RNA Design Rules for Predicting Activity.
    Hiranniramol K; Chen Y; Wang X
    Methods Mol Biol; 2020; 2115():351-364. PubMed ID: 32006410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature.
    Liu Q; He D; Xie L
    PLoS Comput Biol; 2019 Oct; 15(10):e1007480. PubMed ID: 31658261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools.
    Wang J; Zhang X; Cheng L; Luo Y
    RNA Biol; 2020 Jan; 17(1):13-22. PubMed ID: 31533522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.
    Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W
    Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. gRNA validation for wheat genome editing with the CRISPR-Cas9 system.
    Arndell T; Sharma N; Langridge P; Baumann U; Watson-Haigh NS; Whitford R
    BMC Biotechnol; 2019 Oct; 19(1):71. PubMed ID: 31684940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CrnnCrispr: An Interpretable Deep Learning Method for CRISPR/Cas9 sgRNA On-Target Activity Prediction.
    Zhu W; Xie H; Chen Y; Zhang G
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage.
    Riesenberg S; Helmbrecht N; Kanis P; Maricic T; Pääbo S
    Nat Commun; 2022 Jan; 13(1):489. PubMed ID: 35078986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepCRISTL: deep transfer learning to predict CRISPR/Cas9 functional and endogenous on-target editing efficiency.
    Elkayam S; Orenstein Y
    Bioinformatics; 2022 Jun; 38(Suppl 1):i161-i168. PubMed ID: 35758815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat.
    Cram D; Kulkarni M; Buchwaldt M; Rajagopalan N; Bhowmik P; Rozwadowski K; Parkin IAP; Sharpe AG; Kagale S
    BMC Plant Biol; 2019 Nov; 19(1):474. PubMed ID: 31694550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. gRNA Design: How Its Evolution Impacted on CRISPR/Cas9 Systems Refinement.
    Motoche-Monar C; Ordoñez JE; Chang O; Gonzales-Zubiate FA
    Biomolecules; 2023 Nov; 13(12):. PubMed ID: 38136570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants for Efficient Editing with Cas9-Mediated Recombineering in
    Choudhury A; Fankhauser RG; Freed EF; Oh EJ; Morgenthaler AB; Bassalo MC; Copley SD; Kaar JL; Gill RT
    ACS Synth Biol; 2020 May; 9(5):1083-1099. PubMed ID: 32298586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPRedict: a CRISPR-Cas9 web tool for interpretable efficiency predictions.
    Konstantakos V; Nentidis A; Krithara A; Paliouras G
    Nucleic Acids Res; 2022 Jul; 50(W1):W191-W198. PubMed ID: 35670672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Off-Spotter": very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs.
    Pliatsika V; Rigoutsos I
    Biol Direct; 2015 Jan; 10():4. PubMed ID: 25630343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of activity and specificity of CRISPR-Cpf1 using convolutional deep learning neural networks.
    Luo J; Chen W; Xue L; Tang B
    BMC Bioinformatics; 2019 Jun; 20(1):332. PubMed ID: 31195957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger.
    Song L; Ouedraogo JP; Kolbusz M; Nguyen TTM; Tsang A
    PLoS One; 2018; 13(8):e0202868. PubMed ID: 30142205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.