These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34792079)

  • 1. Construction of a quantitative relation between structural relaxation and dynamic heterogeneity by vibrational dynamics in glass-forming liquids and polymers.
    Xia J; Guo H
    Soft Matter; 2021 Dec; 17(47):10753-10764. PubMed ID: 34792079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids.
    Wang L; Xu N; Wang WH; Guan P
    Phys Rev Lett; 2018 Mar; 120(12):125502. PubMed ID: 29694097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Vibrational Modes and Slow Heterogeneous Dynamics in Polymers and Viscous Liquids.
    Puosi F; Tripodo A; Leporini D
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31739510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallic glass-formers in 2D exhibit the same scaling as in 3D between vibrational dynamics and structural relaxation.
    Massa CA; Leporini D; Puosi F
    J Phys Condens Matter; 2020 Feb; 32(8):085701. PubMed ID: 31675741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural order as a genuine control parameter of dynamics in simple glass formers.
    Tong H; Tanaka H
    Nat Commun; 2019 Dec; 10(1):5596. PubMed ID: 31811143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature Dependence of Structural Relaxation in Glass-Forming Liquids and Polymers.
    Novikov VN; Sokolov AP
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of fragility of supercooled liquids with elastic properties of glasses.
    Novikov VN; Ding Y; Sokolov AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061501. PubMed ID: 16089737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal localization transition accompanying glass formation: insights from efficient molecular dynamics simulations of diverse supercooled liquids.
    Hung JH; Patra TK; Meenakshisundaram V; Mangalara JH; Simmons DS
    Soft Matter; 2019 Feb; 15(6):1223-1242. PubMed ID: 30556082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An alternative explanation of the change in T-dependence of the effective Debye-Waller factor at T(c) or T(B).
    Ngai KL; Habasaki J
    J Chem Phys; 2014 Sep; 141(11):114502. PubMed ID: 25240359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local-Average Free Volume Correlates with Dynamics in Glass Formers.
    Mei B; Zhuang B; Lu Y; An L; Wang ZG
    J Phys Chem Lett; 2022 May; 13(17):3957-3964. PubMed ID: 35481369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal divergenceless scaling between structural relaxation and caged dynamics in glass-forming systems.
    Ottochian A; De Michele C; Leporini D
    J Chem Phys; 2009 Dec; 131(22):224517. PubMed ID: 20001067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts.
    Schweizer KS; Saltzman EJ
    J Chem Phys; 2004 Jul; 121(4):1984-2000. PubMed ID: 15260751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt.
    Wu ZW; Kob W; Wang WH; Xu L
    Nat Commun; 2018 Dec; 9(1):5334. PubMed ID: 30559382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaussian excitations model for glass-former dynamics and thermodynamics.
    Matyushov DV; Angell CA
    J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic scaling approach to glass formation.
    Colby RH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1783-92. PubMed ID: 11046462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids.
    Sastry S
    Nature; 2001 Jan; 409(6817):164-7. PubMed ID: 11196634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between particle elasticity, glass fragility, and structural relaxation in dense microgel suspensions.
    Seekell Iii RP; Sarangapani PS; Zhang Z; Zhu Y
    Soft Matter; 2015 Jul; 11(27):5485-91. PubMed ID: 26061613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boiling temperature as a scaling parameter for the microscopic relaxation dynamics in molecular liquids.
    Mamontov E
    J Phys Chem B; 2013 Aug; 117(32):9501-7. PubMed ID: 23869489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of Many Particle Correlations to the Collective Debye-Waller Factor in a Single-Particle Activated Dynamic Theory of the Glass Transition.
    Ghosh A
    J Phys Chem B; 2023 Jun; 127(22):5162-5168. PubMed ID: 37229571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.