These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34792079)

  • 21. A Direct Link between the Fragile-to-Strong Transition and Relaxation in Supercooled Liquids.
    Sun Q; Zhou C; Yue Y; Hu L
    J Phys Chem Lett; 2014 Apr; 5(7):1170-4. PubMed ID: 26274466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Critical-like behaviour of glass-forming liquids.
    Tanaka H; Kawasaki T; Shintani H; Watanabe K
    Nat Mater; 2010 Apr; 9(4):324-31. PubMed ID: 20173749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring a unified description of the super-Arrhenius region above and below the glass transition temperature.
    Kritikos G
    Soft Matter; 2020 Aug; 16(29):6902-6913. PubMed ID: 32647837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of chain stiffness on the dynamical heterogeneity and fragility of polymer melts.
    Pan D; Sun ZY
    J Chem Phys; 2018 Dec; 149(23):234904. PubMed ID: 30579312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The descent into glass formation in polymer fluids.
    Freed KF
    Acc Chem Res; 2011 Mar; 44(3):194-203. PubMed ID: 21207948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition.
    Jakobsen B; Maggi C; Christensen T; Dyre JC
    J Chem Phys; 2008 Nov; 129(18):184502. PubMed ID: 19045409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pressure effects on structure and dynamics of metallic glass-forming liquid.
    Hu YC; Guan PF; Wang Q; Yang Y; Bai HY; Wang WH
    J Chem Phys; 2017 Jan; 146(2):024507. PubMed ID: 28088136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Universal correlations between the fragility and interparticle repulsion of glass-forming liquids.
    Lunkenheimer P; Humann F; Loidl A; Samwer K
    J Chem Phys; 2020 Sep; 153(12):124507. PubMed ID: 33003757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Length scales in glass-forming liquids and related systems: a review.
    Karmakar S; Dasgupta C; Sastry S
    Rep Prog Phys; 2016 Jan; 79(1):016601. PubMed ID: 26684508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The old problems of glass and the glass transition, and the many new twists.
    Angell CA
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6675-82. PubMed ID: 11607560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling of Caged Molecule Dynamics to JG β-Relaxation II: Polymers.
    Ngai KL; Capaccioli S; Prevosto D; Wang LM
    J Phys Chem B; 2015 Sep; 119(38):12502-18. PubMed ID: 26317769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of attractions on correlation length scales in a glass-forming liquid.
    Xu WS; Sun ZY; An LJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041506. PubMed ID: 23214590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Length-Scale Dependence of the Stokes-Einstein and Adam-Gibbs Relations in Model Glass Formers.
    Parmar ADS; Sengupta S; Sastry S
    Phys Rev Lett; 2017 Aug; 119(5):056001. PubMed ID: 28949755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glassy orientational dynamics of rodlike molecules near the isotropic-nematic transition.
    Jana B; Chakrabarti D; Bagchi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011712. PubMed ID: 17677476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activated penetrant dynamics in glass forming liquids: size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility.
    Mei B; Schweizer KS
    Soft Matter; 2021 Mar; 17(9):2624-2639. PubMed ID: 33528485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relating dynamic free volume to cooperative relaxation in a glass-forming polymer composite.
    McKenzie-Smith T; Douglas JF; Starr FW
    J Chem Phys; 2022 Oct; 157(13):131101. PubMed ID: 36209017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A structural study and its relation to dynamic heterogeneity in a polymer glass former.
    Balbuena C; Mariel Gianetti M; Rodolfo Soulé E
    Soft Matter; 2021 Mar; 17(12):3503-3512. PubMed ID: 33662077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Approach to hyperuniformity in a metallic glass-forming material exhibiting a fragile to strong glass transition.
    Zhang H; Wang X; Zhang J; Yu HB; Douglas JF
    Eur Phys J E Soft Matter; 2023 Jun; 46(6):50. PubMed ID: 37380868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy Renormalization for Coarse-Graining the Dynamics of a Model Glass-Forming Liquid.
    Xia W; Song J; Hansoge NK; Phelan FR; Keten S; Douglas JF
    J Phys Chem B; 2018 Feb; 122(6):2040-2045. PubMed ID: 29400063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.