These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34792342)

  • 21. Molecular Origin of Superlubricity between Graphene and a Highly Hydrophobic Surface in Water.
    Li J; Cao W; Li J; Ma M; Luo J
    J Phys Chem Lett; 2019 Jun; 10(11):2978-2984. PubMed ID: 31094522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-low friction and patterning on atomically thin MoS
    Shi B; Gan X; Lang H; Zou K; Wang L; Sun J; Lu Y; Peng Y
    Nanoscale; 2021 Oct; 13(40):16860-16871. PubMed ID: 34673873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A robust AFM-based method for locally measuring the elasticity of samples.
    Bubendorf A; Walheim S; Schimmel T; Meyer E
    Beilstein J Nanotechnol; 2018; 9():1-10. PubMed ID: 29379694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-Segregation-Induced Nanopapillae on FDTS-Blended PDMS Film and Implications in Wettability, Adhesion, and Friction Behaviors.
    Pan Z; Peng R; Tang J; Chen L; Cheng F; Zhao B
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7476-7486. PubMed ID: 29420009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning the Interfacial Mechanical Behaviors of Monolayer Graphene/PMMA Nanocomposites.
    Wang G; Dai Z; Liu L; Hu H; Dai Q; Zhang Z
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22554-62. PubMed ID: 27222920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere.
    Liu SW; Wang HP; Xu Q; Ma TB; Yu G; Zhang C; Geng D; Yu Z; Zhang S; Wang W; Hu YZ; Wang H; Luo J
    Nat Commun; 2017 Feb; 8():14029. PubMed ID: 28195130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Approaches for Achieving Superlubricity in Two-Dimensional Materials.
    Berman D; Erdemir A; Sumant AV
    ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel.
    Arukalam IO; Oguzie EE; Li Y
    J Colloid Interface Sci; 2016 Dec; 484():220-228. PubMed ID: 27614588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superlubric polycrystalline graphene interfaces.
    Gao X; Ouyang W; Urbakh M; Hod O
    Nat Commun; 2021 Sep; 12(1):5694. PubMed ID: 34584082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Amorphous-Crystalline Phase Transition on Superlubric Sliding.
    Cihan E; Dietzel D; Jany BR; Schirmeisen A
    Phys Rev Lett; 2023 Mar; 130(12):126205. PubMed ID: 37027841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Humidity and Water Intercalation on the Tribological Behavior of Graphene and Graphene Oxide.
    Arif T; Colas G; Filleter T
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22537-22544. PubMed ID: 29894628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorinated Graphene: A Promising Macroscale Solid Lubricant under Various Environments.
    Liu Y; Li J; Chen X; Luo J
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40470-40480. PubMed ID: 31577116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of Interfacial Water in the Tribological Behavior of Graphene in an Electric Field.
    Lang H; Zou K; Chen R; Huang Y; Peng Y
    Nano Lett; 2022 Aug; 22(15):6055-6061. PubMed ID: 35868008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of Process Parameters for a Chemi-Absorbed Graphene Coating and Its Nano Tribological Investigation.
    Li P; Li Y; Chen H; Liu H; Cheng X
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31881737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoscale interfacial interactions of graphene with polar and nonpolar liquids.
    Robinson BJ; Kay ND; Kolosov OV
    Langmuir; 2013 Jun; 29(25):7735-42. PubMed ID: 23713755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Moiré-Tile Manipulation-Induced Friction Switch of Graphene on a Platinum Surface.
    Liu Z; Vilhena JG; Hinaut A; Scherb S; Luo F; Zhang J; Glatzel T; Gnecco E; Meyer E
    Nano Lett; 2023 May; 23(10):4693-4697. PubMed ID: 36917620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction of interfacial friction in commensurate graphene/h-BN heterostructures by surface functionalization.
    Guo Y; Qiu J; Guo W
    Nanoscale; 2016 Jan; 8(1):575-80. PubMed ID: 26645099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wear Resistance Limited by Step Edge Failure: The Rise and Fall of Graphene as an Atomically Thin Lubricating Material.
    Qi Y; Liu J; Zhang J; Dong Y; Li Q
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):1099-1106. PubMed ID: 28073278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activating "Invisible" Glue: Using Electron Beam for Enhancement of Interfacial Properties of Graphene-Metal Contact.
    Kim S; Russell M; Kulkarni DD; Henry M; Kim S; Naik RR; Voevodin AA; Jang SS; Tsukruk VV; Fedorov AG
    ACS Nano; 2016 Jan; 10(1):1042-9. PubMed ID: 26741645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Etchant-free graphene transfer using facile intercalation of alkanethiol self-assembled molecules at graphene/metal interfaces.
    Ohtomo M; Sekine Y; Wang S; Hibino H; Yamamoto H
    Nanoscale; 2016 Jun; 8(22):11503-10. PubMed ID: 27198918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.