BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34792514)

  • 1. Iterative reverse Monte Carlo and molecular statics for improved atomic structure modeling: a case study of zinc oxide grown by atomic layer deposition.
    Gettler RC; Koenig HD; Young MJ
    Phys Chem Chem Phys; 2021 Dec; 23(46):26417-26427. PubMed ID: 34792514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryo-ePDF: Overcoming Electron Beam Damage to Study the Local Atomic Structure of Amorphous ALD Aluminum Oxide Thin Films within a TEM.
    Jasim AM; He X; Xing Y; White TA; Young MJ
    ACS Omega; 2021 Apr; 6(13):8986-9000. PubMed ID: 33842769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RMC_POT: a computer code for reverse Monte Carlo modeling the structure of disordered systems containing molecules of arbitrary complexity.
    Gereben O; Pusztai L
    J Comput Chem; 2012 Nov; 33(29):2285-91. PubMed ID: 22782785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SpecSwap-RMC: a novel reverse Monte Carlo approach using a discrete set of local configurations and pre-computed properties.
    Leetmaa M; Wikfeldt KT; Pettersson LG
    J Phys Condens Matter; 2010 Apr; 22(13):135001. PubMed ID: 21389504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of the sampling algorithm for reverse Monte Carlo modeling with an insufficient data set.
    Sato S; Maruyama K
    J Phys Condens Matter; 2013 Nov; 25(45):454208. PubMed ID: 24141147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fullrmc, a rigid body Reverse Monte Carlo modeling package enabled with machine learning and artificial intelligence.
    Aoun B
    J Comput Chem; 2016 May; 37(12):1102-11. PubMed ID: 26800289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The First Eighteen Years of Reverse Monte Carlo Modelling, a workshop held in Budapest, Hungary (28-30th September 2006).
    Keen DA; Pusztai L
    J Phys Condens Matter; 2007 Aug; 19(33):330301. PubMed ID: 21694123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metropolis Monte Carlo calculations of DNA structure using internal coordinates and NMR distance restraints: an alternative method for generating a high-resolution solution structure.
    Ulyanov NB; Schmitz U; James TL
    J Biomol NMR; 1993 Sep; 3(5):547-68. PubMed ID: 8219740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse Monte Carlo modeling for local structures of noble metal nanoparticles using high-energy XRD and EXAFS.
    Harada M; Ikegami R; Kumara LSR; Kohara S; Sakata O
    RSC Adv; 2019 Sep; 9(51):29511-29521. PubMed ID: 35531547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bonding and molecular aggregates in liquid methanol, ethanol, and 1-propanol.
    Vrhovšek A; Gereben O; Jamnik A; Pusztai L
    J Phys Chem B; 2011 Nov; 115(46):13473-88. PubMed ID: 21916497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse Monte Carlo modeling of ion conducting network glasses: an evaluation based on molecular dynamics simulations.
    Müller CR; Kathriarachchi V; Schuch M; Maass P; Petkov VG
    Phys Chem Chem Phys; 2010 Sep; 12(35):10444-51. PubMed ID: 20585683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First example of multi-scale reverse Monte Carlo modeling for small-angle scattering experimental data using reverse mapping from coarse-grained particles to atoms.
    Hagita K; McGreevy RL; Arai T; Inui M; Matsuda K; Tamura K
    J Phys Condens Matter; 2010 Oct; 22(40):404215. PubMed ID: 21386576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in modelling X-ray absorption spectroscopy data using reverse Monte Carlo.
    Di Cicco A; Iesari F
    Phys Chem Chem Phys; 2022 Mar; 24(11):6988-7000. PubMed ID: 35254350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse Monte Carlo modeling in confined systems.
    Sánchez-Gil V; Noya EG; Lomba E
    J Chem Phys; 2014 Jan; 140(2):024504. PubMed ID: 24437893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure.
    Kumara LS; Sakata O; Kohara S; Yang A; Song C; Kusada K; Kobayashi H; Kitagawa H
    Phys Chem Chem Phys; 2016 Nov; 18(44):30622-30629. PubMed ID: 27787531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of strontium tellurite glass, anti-glass and crystalline phases by high-energy X-ray diffraction, reverse Monte Carlo and Rietveld analysis.
    Kaur R; Khanna A; ; Dippel AC; Gutowski O; González F; González-Barriuso M
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2020 Feb; 76(Pt 1):108-121. PubMed ID: 32831246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the atomic structure of an amorphous NiZr(3) alloy by anomalous wide angle x-ray scattering and reverse Monte Carlo simulation.
    de Lima JC; Raoux D; Charriere Y; Maurer M
    J Phys Condens Matter; 2008 Mar; 20(11):115103. PubMed ID: 21694217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient simultaneous reverse Monte Carlo modeling of pair-distribution functions and extended x-ray-absorption fine structure spectra of crystalline disordered materials.
    Németh K; Chapman KW; Balasubramanian M; Shyam B; Chupas PJ; Heald SM; Newville M; Klingler RJ; Winans RE; Almer JD; Sandi G; Srajer G
    J Chem Phys; 2012 Feb; 136(7):074105. PubMed ID: 22360234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of porous carbons using the hybrid reverse Monte Carlo method.
    Jain SK; Pellenq RJ; Pikunic JP; Gubbins KE
    Langmuir; 2006 Nov; 22(24):9942-8. PubMed ID: 17106983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of the short-range structure of α-V
    Kaur N; Khanna A; Kaur P; Singh MN; Sinha AK
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2023 Feb; 79(Pt 1):55-63. PubMed ID: 36748898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.