These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy. Benz DC; Benetos G; Rampidis G; von Felten E; Bakula A; Sustar A; Kudura K; Messerli M; Fuchs TA; Gebhard C; Pazhenkottil AP; Kaufmann PA; Buechel RR J Cardiovasc Comput Tomogr; 2020; 14(5):444-451. PubMed ID: 31974008 [TBL] [Abstract][Full Text] [Related]
3. High-strength deep learning image reconstruction in coronary CT angiography at 70-kVp tube voltage significantly improves image quality and reduces both radiation and contrast doses. Li W; Diao K; Wen Y; Shuai T; You Y; Zhao J; Liao K; Lu C; Yu J; He Y; Li Z Eur Radiol; 2022 May; 32(5):2912-2920. PubMed ID: 35059803 [TBL] [Abstract][Full Text] [Related]
4. Assessment of Image Quality of Coronary Computed Tomography Angiography in Obese Patients by Comparing Deep Learning Image Reconstruction With Adaptive Statistical Iterative Reconstruction Veo. Wang H; Wang R; Li Y; Zhou Z; Gao Y; Bo K; Yu M; Sun Z; Xu L J Comput Assist Tomogr; 2022 Jan-Feb 01; 46(1):34-40. PubMed ID: 35099134 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning Image Reconstruction Algorithm for CCTA: Image Quality Assessment and Clinical Application. Catapano F; Lisi C; Savini G; Olivieri M; Figliozzi S; Caracciolo A; Monti L; Francone M J Comput Assist Tomogr; 2024 Mar-Apr 01; 48(2):217-221. PubMed ID: 37621087 [TBL] [Abstract][Full Text] [Related]
6. Iterative reconstruction Qu T; Guo Y; Li J; Cao L; Li Y; Chen L; Sun J; Lu X; Guo J Br J Radiol; 2022 Dec; 95(1140):20220196. PubMed ID: 36341682 [TBL] [Abstract][Full Text] [Related]
7. A deep-learning reconstruction algorithm that improves the image quality of low-tube-voltage coronary CT angiography. Wang M; Fan J; Shi X; Qin L; Yan F; Yang W Eur J Radiol; 2022 Jan; 146():110070. PubMed ID: 34856519 [TBL] [Abstract][Full Text] [Related]
8. Deep learning image reconstruction algorithm: impact on image quality in coronary computed tomography angiography. De Santis D; Polidori T; Tremamunno G; Rucci C; Piccinni G; Zerunian M; Pugliese L; Del Gaudio A; Guido G; Barbato L; Laghi A; Caruso D Radiol Med; 2023 Apr; 128(4):434-444. PubMed ID: 36847992 [TBL] [Abstract][Full Text] [Related]
9. Reducing both radiation and contrast doses for overweight patients in coronary CT angiography with 80-kVp and deep learning image reconstruction. Li W; Lu H; Wen Y; Zhou M; Shuai T; You Y; Zhao J; Liao K; Lu C; Li J; Li Z; Diao K; He Y Eur J Radiol; 2023 Apr; 161():110736. PubMed ID: 36804314 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Jiang B; Li N; Shi X; Zhang S; Li J; de Bock GH; Vliegenthart R; Xie X Radiology; 2022 Apr; 303(1):202-212. PubMed ID: 35040674 [TBL] [Abstract][Full Text] [Related]
11. Impact of deep learning-based image reconstruction on image quality compared with adaptive statistical iterative reconstruction-Veo in renal and adrenal computed tomography. Bie Y; Yang S; Li X; Zhao K; Zhang C; Zhong H J Xray Sci Technol; 2022; 30(3):409-418. PubMed ID: 35124575 [TBL] [Abstract][Full Text] [Related]
12. Application of deep learning image reconstruction in low-dose chest CT scan. Wang H; Li LL; Shang J; Song J; Liu B Br J Radiol; 2022 May; 95(1133):20210380. PubMed ID: 35084210 [TBL] [Abstract][Full Text] [Related]
13. Image quality of coronary CT angiography at ultra low tube voltage reconstructed with a deep-learning image reconstruction algorithm in patients of different weight. Zhu L; Ha R; Machida H; Shi X; Wang F; Chen K; Chen D; Cao Y; Shen Y; Yang L Quant Imaging Med Surg; 2023 Jun; 13(6):3891-3901. PubMed ID: 37284103 [TBL] [Abstract][Full Text] [Related]
14. Deep learning image reconstruction algorithm reduces image noise while alters radiomics features in dual-energy CT in comparison with conventional iterative reconstruction algorithms: a phantom study. Zhong J; Xia Y; Chen Y; Li J; Lu W; Shi X; Feng J; Yan F; Yao W; Zhang H Eur Radiol; 2023 Feb; 33(2):812-824. PubMed ID: 36197579 [TBL] [Abstract][Full Text] [Related]
15. Effect of deep learning image reconstruction with high-definition standard scan mode on image quality of coronary stents and arteries. Liu M; Chen X; Liu W; Guo Y; Zhu Y; Duan Y; Huang W; Kong W; Yan C; Qin J Quant Imaging Med Surg; 2024 Feb; 14(2):1616-1635. PubMed ID: 38415168 [TBL] [Abstract][Full Text] [Related]
16. Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise. Kim JH; Yoon HJ; Lee E; Kim I; Cha YK; Bak SH Korean J Radiol; 2021 Jan; 22(1):131-138. PubMed ID: 32729277 [TBL] [Abstract][Full Text] [Related]
17. Application of deep learning image reconstruction algorithm to improve image quality in CT angiography of children with Takayasu arteritis. Sun J; Li H; Li H; Li M; Gao Y; Zhou Z; Peng Y J Xray Sci Technol; 2022; 30(1):177-184. PubMed ID: 34806646 [TBL] [Abstract][Full Text] [Related]
18. Can 1.25 mm thin-section images generated with Deep Learning Image Reconstruction technique replace standard-of-care 5 mm images in abdominal CT? Cao J; Mroueh N; Pisuchpen N; Parakh A; Lennartz S; Pierce TT; Kambadakone AR Abdom Radiol (NY); 2023 Oct; 48(10):3253-3264. PubMed ID: 37369922 [TBL] [Abstract][Full Text] [Related]
19. Image Quality Improvement of Low-dose Abdominal CT using Deep Learning Image Reconstruction Compared with the Second Generation Iterative Reconstruction. Kang HJ; Lee JM; Park SJ; Lee SM; Joo I; Yoon JH Curr Med Imaging; 2024; 20():e250523217310. PubMed ID: 37231764 [TBL] [Abstract][Full Text] [Related]