BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34792701)

  • 1. Enhancing transcription in Escherichia coli and Pseudomonas putida using bacteriophage lambda anti-terminator protein Q.
    Khan JA; Guss AM; Kao KC
    Biotechnol Lett; 2022 Feb; 44(2):253-258. PubMed ID: 34792701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bacteriophage lambdaQ anti-terminator protein regulates late gene expression as a stable component of the transcription elongation complex.
    Deighan P; Hochschild A
    Mol Microbiol; 2007 Feb; 63(3):911-20. PubMed ID: 17302807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of RNA polymerase initiation and pausing at the lambda late gene promoter in vivo.
    Kainz M; Roberts JW
    J Mol Biol; 1995 Dec; 254(5):808-14. PubMed ID: 7500352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of antitermination mechanisms. Suppression of the terminator cluster T1-T2 of Escherichia coli ribosomal RNA operon, rrnB, by phage lambda antiterminators.
    Ghosh B; Grzadzielska E; Bhattacharya P; Peralta E; DeVito J; Das A
    J Mol Biol; 1991 Nov; 222(1):59-66. PubMed ID: 1719220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Transcriptional and Translational Hindrances in a Modular T7RNAP Expression System in Engineered
    Beentjes M; Ortega-Arbulú AS; Löwe H; Pflüger-Grau K; Kremling A
    ACS Synth Biol; 2022 Dec; 11(12):3939-3953. PubMed ID: 36370089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phage lambda gene Q antiterminator recognizes RNA polymerase near the promoter and accelerates it through a pause site.
    Grayhack EJ; Yang XJ; Lau LF; Roberts JW
    Cell; 1985 Aug; 42(1):259-69. PubMed ID: 2990726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional importance of regions in Escherichia coli elongation factor NusA that interact with RNA polymerase, the bacteriophage lambda N protein and RNA.
    Mah TF; Li J; Davidson AR; Greenblatt J
    Mol Microbiol; 1999 Nov; 34(3):523-37. PubMed ID: 10564494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NusA directly interacts with antitermination factor Q from phage λ.
    Dudenhoeffer BR; Borggraefe J; Schweimer K; Knauer SH
    Sci Rep; 2020 Apr; 10(1):6607. PubMed ID: 32313022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene Q antiterminator proteins of Escherichia coli phages 82 and lambda suppress pausing by RNA polymerase at a rho-dependent terminator and at other sites.
    Yang XJ; Roberts JW
    Proc Natl Acad Sci U S A; 1989 Jul; 86(14):5301-5. PubMed ID: 2526335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An analysis of the role of host factors in transcription antitermination in vitro by the Q protein of coliphage lambda.
    Barik S; Das A
    Mol Gen Genet; 1990 Jun; 222(1):152-6. PubMed ID: 2146485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Bacteriophage λ: electrostatic properties of the genome and its elements].
    Krutinina GG; Krutinin EA; Kamzolova SG; Osypov AA
    Mol Biol (Mosk); 2015; 49(3):384-93. PubMed ID: 26107891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli and Pseudomonas putida RNA polymerases display identical contacts with promoters.
    Gragerov AI; Chenchik AA; Aivasashvilli VA; Beabealashvilli RSh; Nikiforov VG
    Mol Gen Genet; 1984; 195(3):511-5. PubMed ID: 6236350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemical cross-linking analysis of protein-nucleic acid interactions in Escherichia coli transcription complexes from lambda PR' promoter.
    Hanna MM
    Methods Enzymol; 1996; 274():403-18. PubMed ID: 8902821
    [No Abstract]   [Full Text] [Related]  

  • 14. Structural basis of Q-dependent antitermination.
    Yin Z; Kaelber JT; Ebright RH
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18384-18390. PubMed ID: 31455742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host factor requirements for processive antitermination of transcription and suppression of pausing by the N protein of bacteriophage lambda.
    Mason SW; Li J; Greenblatt J
    J Biol Chem; 1992 Sep; 267(27):19418-26. PubMed ID: 1388170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of regulation of bacteriophage lambda pR promoter activity by Escherichia coli DnaA protein.
    Glinkowska M; Majka J; Messer W; Wegrzyn G
    J Biol Chem; 2003 Jun; 278(25):22250-6. PubMed ID: 12654908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida.
    Marqués S; Gallegos MT; Manzanera M; Holtel A; Timmis KN; Ramos JL
    J Bacteriol; 1998 Jun; 180(11):2889-94. PubMed ID: 9603877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli RNA polymerase mutations located near the upstream edge of an RNA:DNA hybrid and the beginning of the RNA-exit channel are defective for transcription antitermination by the N protein from lambdoid phage H-19B.
    Cheeran A; Babu Suganthan R; Swapna G; Bandey I; Achary MS; Nagarajaram HA; Sen R
    J Mol Biol; 2005 Sep; 352(1):28-43. PubMed ID: 16061258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of bacteriophage lambdaN-dependent antitermination suggests a possible role for the RNA polymerase alpha subunit in facilitating specific functions of NusA and NusE.
    Szalewska-Pałasz A; Strzelczyk B; Herman-Antosiewicz A; Wegrzyn G; Thomas MS
    Arch Microbiol; 2003 Sep; 180(3):161-8. PubMed ID: 12845423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Components of multiprotein-RNA complex that controls transcription elongation in Escherichia coli phage lambda.
    Das A; Pal M; Mena JG; Whalen W; Wolska K; Crossley R; Rees W; von Hippel PH; Costantino N; Court D; Mazzulla M; Altieri AS; Byrd RA; Chattopadhyay S; DeVito J; Ghosh B
    Methods Enzymol; 1996; 274():374-402. PubMed ID: 8902820
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.