BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34792860)

  • 1. Descriptive proteomics of paired human vocal fold and buccal mucosa tissue.
    Grossmann T; Darnhofer B; Birner-Gruenberger R; Kirsch A; Gugatschka M
    Proteomics Clin Appl; 2022 Mar; 16(2):e2100050. PubMed ID: 34792860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative proteomics of paired vocal fold and oral mucosa fibroblasts.
    Karbiener M; Darnhofer B; Frisch MT; Rinner B; Birner-Gruenberger R; Gugatschka M
    J Proteomics; 2017 Feb; 155():11-21. PubMed ID: 28099887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Furosemide-induced systemic dehydration alters the proteome of rabbit vocal folds.
    do Nascimento NC; Dos Santos AP; Mohallem R; Aryal UK; Xie J; Cox A; Sivasankar MP
    J Proteomics; 2022 Feb; 252():104431. PubMed ID: 34823036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming growth factor β3 for the prevention of vocal fold scarring.
    Ohno S; Hirano S; Kanemaru S; Kitani Y; Kojima T; Ishikawa S; Mizuta M; Tateya I; Nakamura T; Ito J
    Laryngoscope; 2012 Mar; 122(3):583-9. PubMed ID: 22252900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosimulation of inflammation and healing in surgically injured vocal folds.
    Li NY; Vodovotz Y; Hebda PA; Abbott KV
    Ann Otol Rhinol Laryngol; 2010 Jun; 119(6):412-23. PubMed ID: 20583741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current treatment of vocal fold scarring.
    Hirano S
    Curr Opin Otolaryngol Head Neck Surg; 2005 Jun; 13(3):143-7. PubMed ID: 15908810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TGF-β3 modulates the inflammatory environment and reduces scar formation following vocal fold mucosal injury in rats.
    Chang Z; Kishimoto Y; Hasan A; Welham NV
    Dis Model Mech; 2014 Jan; 7(1):83-91. PubMed ID: 24092879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interstitial protein alterations in rabbit vocal fold with scar.
    Thibeault SL; Bless DM; Gray SD
    J Voice; 2003 Sep; 17(3):377-83. PubMed ID: 14513960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homeostasis of hyaluronic acid in normal and scarred vocal folds.
    Tateya I; Tateya T; Watanuki M; Bless DM
    J Voice; 2015 Mar; 29(2):133-9. PubMed ID: 25499520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vocal fold scars: a common classification proposal by the American Laryngological Association and European Laryngological Society.
    Hantzakos A; Dikkers FG; Giovanni A; Benninger MS; Remacle M; Sjögren EV; Woo P
    Eur Arch Otorhinolaryngol; 2019 Aug; 276(8):2289-2292. PubMed ID: 31144013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyaluronan levels in acute vocal fold scar.
    Thibeault SL; Rousseau B; Welham NV; Hirano S; Bless DM
    Laryngoscope; 2004 Apr; 114(4):760-4. PubMed ID: 15064637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rabbit vocal fold laser scarring model for testing lamina propria tissue-engineering therapies.
    Mau T; Du M; Xu CC
    Laryngoscope; 2014 Oct; 124(10):2321-6. PubMed ID: 24715695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteomic changes in rabbit vocal folds undergoing systemic dehydration and systemic rehydration.
    Bailey TW; do Nascimento NC; Dos Santos AP; Sivasankar MP; Cox A
    J Proteomics; 2023 Jan; 270():104734. PubMed ID: 36174951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implantation of an atelocollagen sheet for the treatment of vocal fold scarring and sulcus vocalis.
    Kishimoto Y; Hirano S; Kojima T; Kanemaru S; Ito J
    Ann Otol Rhinol Laryngol; 2009 Sep; 118(9):613-20. PubMed ID: 19810599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histologic characterization of human scarred vocal folds.
    Hirano S; Minamiguchi S; Yamashita M; Ohno T; Kanemaru S; Kitamura M
    J Voice; 2009 Jul; 23(4):399-407. PubMed ID: 18395421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis reveals that aging rabbit vocal folds are more vulnerable to changes caused by systemic dehydration.
    do Nascimento NC; Bailey TW; Santos AP; Duan C; Mohallem R; Franco J; Aryal UK; Xie J; Cox A; Sivasankar MP
    BMC Genomics; 2022 Nov; 23(1):762. PubMed ID: 36411412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human amniotic epithelial cell transplantation improves scar remodeling in a rabbit model of acute vocal fold injury: a pilot study.
    Tchoukalova YD; Zacharias SRC; Mitchell N; Madsen C; Myers CE; Gadalla D; Skinner J; Kopaczka K; Gramignoli R; Lott DG
    Stem Cell Res Ther; 2022 Jan; 13(1):31. PubMed ID: 35073957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagen fibrillar structures in vocal fold scarring and repair using stem cell therapy: a detailed histological, immunohistochemical and atomic force microscopy study.
    Svistushkin MV; Kotova SL; Shekhter AB; Svistushkin VM; Akovantseva AA; Frolova AA; Fayzullin AL; Starostina SV; Bezrukov EA; Sukhanov RB; Timashev SF; Butnaru DV; Timashev PS
    J Microsc; 2019 Apr; 274(1):55-68. PubMed ID: 30740689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immediate inflammatory response and scar formation in wounded vocal folds.
    Lim X; Tateya I; Tateya T; Muñoz-Del-Río A; Bless DM
    Ann Otol Rhinol Laryngol; 2006 Dec; 115(12):921-9. PubMed ID: 17214268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibronectin and adhesion molecules on canine scarred vocal folds.
    Hirano S; Bless DM; Rousseau B; Welham N; Scheidt T; Ford CN
    Laryngoscope; 2003 Jun; 113(6):966-72. PubMed ID: 12782806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.