These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1169 related articles for article (PubMed ID: 34793126)
1. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage. Kwon G; Ko Y; Kim Y; Kim K; Kang K Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126 [TBL] [Abstract][Full Text] [Related]
2. Materials Design and Mechanistic Understanding of Tellurium and Tellurium-Sulfur Cathodes for Rechargeable Batteries. Zhang Y; Liu J Acc Chem Res; 2024 Sep; 57(17):2500-2511. PubMed ID: 39137405 [TBL] [Abstract][Full Text] [Related]
3. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications. Yuan S; Huang X; Kong T; Yan L; Wang Y Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018 [TBL] [Abstract][Full Text] [Related]
4. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation. Lu Y; Ni Y; Chen J Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205 [TBL] [Abstract][Full Text] [Related]
5. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
6. Development, Essence, and Application of a Metal-Catalysis Battery. Feng Y; Yan S; Zhang X; Wang Y Acc Chem Res; 2023 Jun; 56(12):1645-1655. PubMed ID: 37282625 [TBL] [Abstract][Full Text] [Related]
7. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage. Zhang C; Zhang L; Yu G Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933 [TBL] [Abstract][Full Text] [Related]
8. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
9. Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes. Xie J; Zhang Q Small; 2019 Apr; 15(15):e1805061. PubMed ID: 30848095 [TBL] [Abstract][Full Text] [Related]
13. A Comparative Review of Electrolytes for Organic-Material-Based Energy-Storage Devices Employing Solid Electrodes and Redox Fluids. Chen R; Bresser D; Saraf M; Gerlach P; Balducci A; Kunz S; Schröder D; Passerini S; Chen J ChemSusChem; 2020 May; 13(9):2205-2219. PubMed ID: 31995281 [TBL] [Abstract][Full Text] [Related]
14. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries. Lee S; Kwon G; Ku K; Yoon K; Jung SK; Lim HD; Kang K Adv Mater; 2018 Oct; 30(42):e1704682. PubMed ID: 29582467 [TBL] [Abstract][Full Text] [Related]
15. Tunable Redox-Active Triazenyl-Carbene Platforms: A New Class of Anolytes for Non-Aqueous Organic Redox Flow Batteries. Back J; Kwon G; Byeon JE; Song H; Kang K; Lee E ACS Appl Mater Interfaces; 2020 Aug; 12(33):37338-37345. PubMed ID: 32692157 [TBL] [Abstract][Full Text] [Related]
17. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries. Wang DY; Guo W; Fu Y Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341 [TBL] [Abstract][Full Text] [Related]
18. Redox-Active High-Performance Polyimides as Versatile Electrode Materials for Organic Lithium- and Sodium-Ion Batteries. Lubis AL; Baskoro F; Lin TH; Wong HQ; Liou GS; Yen HJ ACS Appl Mater Interfaces; 2024 Sep; 16(37):48722-48735. PubMed ID: 38148122 [TBL] [Abstract][Full Text] [Related]
19. Bio-Inspired Isoalloxazine Redox Moieties for Rechargeable Aqueous Zinc-Ion Batteries. Cheng L; Liang Y; Zhu Q; Yu D; Chen M; Liang J; Wang H Chem Asian J; 2020 Apr; 15(8):1290-1295. PubMed ID: 32166912 [TBL] [Abstract][Full Text] [Related]
20. Toward sustainable and systematic recycling of spent rechargeable batteries. Zhang X; Li L; Fan E; Xue Q; Bian Y; Wu F; Chen R Chem Soc Rev; 2018 Oct; 47(19):7239-7302. PubMed ID: 30124695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]