These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1169 related articles for article (PubMed ID: 34793126)

  • 41. Biomass-Derived Materials for Advanced Rechargeable Batteries.
    Wang T; Shi Z; Zhong Y; Ma Y; He J; Zhu Z; Cheng XB; Lu B; Wu Y
    Small; 2024 Nov; 20(45):e2310907. PubMed ID: 39051510
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metal-organic framework based electrode materials for lithium-ion batteries: a review.
    Mehek R; Iqbal N; Noor T; Amjad MZB; Ali G; Vignarooban K; Khan MA
    RSC Adv; 2021 Sep; 11(47):29247-29266. PubMed ID: 35479575
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrochemical Insights, Developing Strategies, and Perspectives toward Advanced Potassium-Sulfur Batteries.
    Yuan X; Zhu B; Feng J; Wang C; Cai X; Qiao K; Qin R
    Small; 2020 Oct; 16(42):e2003386. PubMed ID: 32964701
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nano Polymorphism-Enabled Redox Electrodes for Rechargeable Batteries.
    Mei J; Wang J; Gu H; Du Y; Wang H; Yamauchi Y; Liao T; Sun Z; Yin Z
    Adv Mater; 2021 Feb; 33(8):e2004920. PubMed ID: 33382163
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Layered Oxide Cathodes for Sodium-Ion Batteries: Storage Mechanism, Electrochemistry, and Techno-economics.
    Zuo W; Innocenti A; Zarrabeitia M; Bresser D; Yang Y; Passerini S
    Acc Chem Res; 2023 Feb; 56(3):284-296. PubMed ID: 36696961
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sustainable Battery Materials from Biomass.
    Liedel C
    ChemSusChem; 2020 May; 13(9):2110-2141. PubMed ID: 32212246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Research Progress on Applications of Polyaniline (PANI) for Electrochemical Energy Storage and Conversion.
    Li Z; Gong L
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31979286
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Organic Electrode Materials for Metal Ion Batteries.
    Shea JJ; Luo C
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5361-5380. PubMed ID: 31917538
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity.
    Liu Y; Zhou G; Liu K; Cui Y
    Acc Chem Res; 2017 Dec; 50(12):2895-2905. PubMed ID: 29206446
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage.
    Sun Y; Sun J; Sanchez JS; Xia Z; Xiao L; Chen R; Palermo V
    Chem Commun (Camb); 2023 Feb; 59(18):2571-2583. PubMed ID: 36749576
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sustainable Energy Storage: Recent Trends and Developments toward Fully Organic Batteries.
    Friebe C; Lex-Balducci A; Schubert US
    ChemSusChem; 2019 Sep; 12(18):4093-4115. PubMed ID: 31297974
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries.
    Lu Y; Cai Y; Zhang Q; Chen J
    Adv Mater; 2022 Jun; 34(22):e2104150. PubMed ID: 34617334
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage.
    Xu F; Jin S; Zhong H; Wu D; Yang X; Chen X; Wei H; Fu R; Jiang D
    Sci Rep; 2015 Feb; 5():8225. PubMed ID: 25650133
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
    Jia C; Pan F; Zhu YG; Huang Q; Lu L; Wang Q
    Sci Adv; 2015 Nov; 1(10):e1500886. PubMed ID: 26702440
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A metal-free organic-inorganic aqueous flow battery.
    Huskinson B; Marshak MP; Suh C; Er S; Gerhardt MR; Galvin CJ; Chen X; Aspuru-Guzik A; Gordon RG; Aziz MJ
    Nature; 2014 Jan; 505(7482):195-8. PubMed ID: 24402280
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Organic Electroactive Materials for Aqueous Redox Flow Batteries.
    Yang G; Zhu Y; Hao Z; Lu Y; Zhao Q; Zhang K; Chen J
    Adv Mater; 2023 Aug; 35(33):e2301898. PubMed ID: 37158492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A low-cost and high-loading viologen-based organic electrode for rechargeable lithium batteries.
    Chen M; Liu L; Zhang P; Chen H
    RSC Adv; 2021 Jul; 11(39):24429-24435. PubMed ID: 35479055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 59.