These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34793458)

  • 1. Assessing the contribution of active somatosensory stimulation to self-acceleration perception in dynamic driving simulators.
    Bruschetta M; de Winkel KN; Mion E; Pretto P; Beghi A; Bülthoff HH
    PLoS One; 2021; 16(11):e0259015. PubMed ID: 34793458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of motion platform on postural instability and head vibration exposure at driving simulators.
    Aykent B; Merienne F; Paillot D; Kemeny A
    Hum Mov Sci; 2014 Feb; 33():354-68. PubMed ID: 24321410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auto-Tuning parameters of motion cueing algorithms for high performance driving simulator based on Kuka Robocoaster.
    Pham DA; Nguyen DT
    Sci Prog; 2022; 105(2):368504221104333. PubMed ID: 35642264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can We Study Autonomous Driving Comfort in Moving-Base Driving Simulators? A Validation Study.
    Bellem H; Klüver M; Schrauf M; Schöner HP; Hecht H; Krems JF
    Hum Factors; 2017 May; 59(3):442-456. PubMed ID: 28005453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of yaw motion on the perception of active vs passive visual curvilinear displacement.
    Savona F; Stratulat AM; Roussarie V; Bourdin C
    J Vestib Res; 2015; 25(3-4):125-41. PubMed ID: 26756128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of lateral acceleration in curve driving: driver model and experiments on a real vehicle and a driving simulator.
    Reymond G; Kemeny A; Droulez J; Berthoz A
    Hum Factors; 2001; 43(3):483-95. PubMed ID: 11866202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perceptual scaling of visual and inertial cues: effects of field of view, image size, depth cues, and degree of freedom.
    Correia Grácio BJ; Bos JE; van Paassen MM; Mulder M
    Exp Brain Res; 2014 Feb; 232(2):637-46. PubMed ID: 24292492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examining the Effect of Age on Visual-Vestibular Self-Motion Perception Using a Driving Paradigm.
    Ramkhalawansingh R; Keshavarz B; Haycock B; Shahab S; Campos JL
    Perception; 2017 May; 46(5):566-585. PubMed ID: 27789758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of visual and inertial cues in perceived heading of self-motion.
    de Winkel KN; Weesie J; Werkhoven PJ; Groen EL
    J Vis; 2010 Oct; 10(12):1. PubMed ID: 21047733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MPI CyberMotion Simulator: implementation of a novel motion simulator to investigate multisensory path integration in three dimensions.
    Barnett-Cowan M; Meilinger T; Vidal M; Teufel H; Bülthoff HH
    J Vis Exp; 2012 May; (63):e3436. PubMed ID: 22617497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changing lanes: inertial cues and explicit path information facilitate steering performance when visual feedback is removed.
    Macuga KL; Beall AC; Kelly JW; Smith RS; Loomis JM
    Exp Brain Res; 2007 Apr; 178(2):141-50. PubMed ID: 17091302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of visual and inertial cues in the perception of angular self-motion.
    de Winkel KN; Soyka F; Barnett-Cowan M; Bülthoff HH; Groen EL; Werkhoven PJ
    Exp Brain Res; 2013 Nov; 231(2):209-18. PubMed ID: 24013788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is simulator-based driver rehabilitation missing motion feedback?
    William H H; Kinder CM; Lodha N; Smith BW
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():631-636. PubMed ID: 31374701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal visual-vestibular integration under conditions of conflicting intersensory motion profiles.
    Butler JS; Campos JL; Bülthoff HH
    Exp Brain Res; 2015 Feb; 233(2):587-97. PubMed ID: 25361642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual motion perception predicts driving hazard perception ability.
    Lacherez P; Au S; Wood JM
    Acta Ophthalmol; 2014 Feb; 92(1):88-93. PubMed ID: 23025481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-motion perception during conflicting visual-vestibular acceleration.
    Ishida M; Fushiki H; Nishida H; Watanabe Y
    J Vestib Res; 2008; 18(5-6):267-72. PubMed ID: 19542600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear vection in virtual environments can be strengthened by discordant inertial input.
    Wright WG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1157-60. PubMed ID: 19963991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A meta-analysis of simulator sickness as a function of simulator fidelity.
    de Winkel KN; Talsma TMW; Happee R
    Exp Brain Res; 2022 Dec; 240(12):3089-3105. PubMed ID: 36260094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New ideas on how drivers perceive speed emerge from the fog.
    Culham JC
    Elife; 2012 Oct; 1():e00281. PubMed ID: 23110255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foggy perception slows us down.
    Pretto P; Bresciani JP; Rainer G; Bülthoff HH
    Elife; 2012 Oct; 1():e00031. PubMed ID: 23110253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.