BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34793478)

  • 1. Electronic control of redox reactions inside Escherichia coli using a genetic module.
    Baruch M; Tejedor-Sanz S; Su L; Ajo-Franklin CM
    PLoS One; 2021; 16(11):e0258380. PubMed ID: 34793478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards patterned bioelectronics: facilitated immobilization of exoelectrogenic Escherichia coli with heterologous pili.
    Lienemann M; TerAvest MA; Pitkänen JP; Stuns I; Penttilä M; Ajo-Franklin CM; Jäntti J
    Microb Biotechnol; 2018 Nov; 11(6):1184-1194. PubMed ID: 30296001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADH dehydrogenases drive inward electron transfer in Shewanella oneidensis MR-1.
    Tefft NM; Ford K; TerAvest MA
    Microb Biotechnol; 2023 Mar; 16(3):560-568. PubMed ID: 36420671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking Electron Uptake from a Cathode into
    Rowe AR; Rajeev P; Jain A; Pirbadian S; Okamoto A; Gralnick JA; El-Naggar MY; Nealson KH
    mBio; 2018 Feb; 9(1):. PubMed ID: 29487241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards electrosynthesis in shewanella: energetics of reversing the mtr pathway for reductive metabolism.
    Ross DE; Flynn JM; Baron DB; Gralnick JA; Bond DR
    PLoS One; 2011 Feb; 6(2):e16649. PubMed ID: 21311751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The outer membrane protein Omp35 affects the reduction of Fe(III), nitrate, and fumarate by Shewanella oneidensis MR-1.
    Maier TM; Myers CR
    BMC Microbiol; 2004 Jun; 4():23. PubMed ID: 15212692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes.
    Kane AL; Bond DR; Gralnick JA
    ACS Synth Biol; 2013 Feb; 2(2):93-101. PubMed ID: 23656372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shewanella oneidensis MR-1 as a bacterial platform for electro-biotechnology.
    Ikeda S; Takamatsu Y; Tsuchiya M; Suga K; Tanaka Y; Kouzuma A; Watanabe K
    Essays Biochem; 2021 Jul; 65(2):355-364. PubMed ID: 33769488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria.
    Flynn JM; Ross DE; Hunt KA; Bond DR; Gralnick JA
    mBio; 2010 Nov; 1(5):. PubMed ID: 21060736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifying Cytochrome
    Su L; Fukushima T; Prior A; Baruch M; Zajdel TJ; Ajo-Franklin CM
    ACS Synth Biol; 2020 Jan; 9(1):115-124. PubMed ID: 31880923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1.
    Schuetz B; Schicklberger M; Kuermann J; Spormann AM; Gescher J
    Appl Environ Microbiol; 2009 Dec; 75(24):7789-96. PubMed ID: 19837833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform and Pitting Corrosion of Carbon Steel by Shewanella oneidensis MR-1 under Nitrate-Reducing Conditions.
    Miller RB; Lawson K; Sadek A; Monty CN; Senko JM
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrons selective uptake of a metal-reducing bacterium Shewanella oneidensis MR-1 from ferrocyanide.
    Zheng Z; Xiao Y; Wu R; Mølager Christensen HE; Zhao F; Zhang J
    Biosens Bioelectron; 2019 Oct; 142():111571. PubMed ID: 31445395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CymA and Exogenous Flavins Improve Extracellular Electron Transfer and Couple It to Cell Growth in Mtr-Expressing Escherichia coli.
    Jensen HM; TerAvest MA; Kokish MG; Ajo-Franklin CM
    ACS Synth Biol; 2016 Jul; 5(7):679-88. PubMed ID: 27000939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells.
    Sturm-Richter K; Golitsch F; Sturm G; Kipf E; Dittrich A; Beblawy S; Kerzenmacher S; Gescher J
    Bioresour Technol; 2015 Jun; 186():89-96. PubMed ID: 25812811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases.
    Gescher JS; Cordova CD; Spormann AM
    Mol Microbiol; 2008 May; 68(3):706-19. PubMed ID: 18394146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering a Native Inducible Expression System in Shewanella oneidensis to Control Extracellular Electron Transfer.
    West EA; Jain A; Gralnick JA
    ACS Synth Biol; 2017 Sep; 6(9):1627-1634. PubMed ID: 28562022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.
    Wu C; Cheng YY; Li BB; Li WW; Li DB; Yu HQ
    Bioresour Technol; 2013 May; 136():711-4. PubMed ID: 23558182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroanalysis of Shewanella oneidensis MR-1.
    Shumyantseva VV; Shebanova AS; Chalenko YM; Voeikova TA; Kirpichnikov MP; Shaitan KV; Debabov VG
    Dokl Biochem Biophys; 2015; 464():325-8. PubMed ID: 26518560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.