BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34793478)

  • 21. Roles of d-Lactate Dehydrogenases in the Anaerobic Growth of
    Kasai T; Suzuki Y; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30504209
    [No Abstract]   [Full Text] [Related]  

  • 22. Electrolocation? The evidence for redox-mediated taxis in Shewanella oneidensis.
    Starwalt-Lee R; El-Naggar MY; Bond DR; Gralnick JA
    Mol Microbiol; 2021 Jun; 115(6):1069-1079. PubMed ID: 33200455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering of a synthetic electron conduit in living cells.
    Jensen HM; Albers AE; Malley KR; Londer YY; Cohen BE; Helms BA; Weigele P; Groves JT; Ajo-Franklin CM
    Proc Natl Acad Sci U S A; 2010 Nov; 107(45):19213-8. PubMed ID: 20956333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport.
    Sucheta A; Cammack R; Weiner J; Armstrong FA
    Biochemistry; 1993 May; 32(20):5455-65. PubMed ID: 8499449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis.
    Coursolle D; Baron DB; Bond DR; Gralnick JA
    J Bacteriol; 2010 Jan; 192(2):467-74. PubMed ID: 19897659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Soluble electron acceptors affect bioluminescence from Shewanella woodyi.
    Theberge AL; Alsabia SM; Mortensen CT; Blair AG; Wendel NM; Biffinger JC
    Luminescence; 2020 May; 35(3):427-433. PubMed ID: 31828931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multistep hopping and extracellular charge transfer in microbial redox chains.
    Pirbadian S; El-Naggar MY
    Phys Chem Chem Phys; 2012 Oct; 14(40):13802-8. PubMed ID: 22797729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Divergent Nrf Family Proteins and MtrCAB Homologs Facilitate Extracellular Electron Transfer in Aeromonas hydrophila.
    Conley BE; Intile PJ; Bond DR; Gralnick JA
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NapB in excess inhibits growth of Shewanella oneidensis by dissipating electrons of the quinol pool.
    Jin M; Zhang Q; Sun Y; Gao H
    Sci Rep; 2016 Nov; 6():37456. PubMed ID: 27857202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.
    Barchinger SE; Pirbadian S; Sambles C; Baker CS; Leung KM; Burroughs NJ; El-Naggar MY; Golbeck JH
    Appl Environ Microbiol; 2016 Sep; 82(17):5428-43. PubMed ID: 27342561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Condition-Specific Molecular Network Analysis Revealed That Flagellar Proteins Are Involved in Electron Transfer Processes of
    Ding D; Wang M; Wu M; Gan C; Wu P
    Genet Res (Camb); 2021; 2021():9953783. PubMed ID: 34456634
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    Fan G; Dundas CM; Graham AJ; Lynd NA; Keitz BK
    Proc Natl Acad Sci U S A; 2018 May; 115(18):4559-4564. PubMed ID: 29666254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shewanella secretes flavins that mediate extracellular electron transfer.
    Marsili E; Baron DB; Shikhare ID; Coursolle D; Gralnick JA; Bond DR
    Proc Natl Acad Sci U S A; 2008 Mar; 105(10):3968-73. PubMed ID: 18316736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical synthesis of formic acid from CO
    Le QAT; Kim HG; Kim YH
    Enzyme Microb Technol; 2018 Sep; 116():1-5. PubMed ID: 29887011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism.
    Babauta JT; Nguyen HD; Beyenal H
    Environ Sci Technol; 2011 Aug; 45(15):6654-60. PubMed ID: 21648431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli.
    Goldbeck CP; Jensen HM; TerAvest MA; Beedle N; Appling Y; Hepler M; Cambray G; Mutalik V; Angenent LT; Ajo-Franklin CM
    ACS Synth Biol; 2013 Mar; 2(3):150-9. PubMed ID: 23656438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Secreted Flavin Cofactors for Anaerobic Respiration of Fumarate and Urocanate by Shewanella oneidensis: Cost and Role.
    Kees ED; Pendleton AR; Paquete CM; Arriola MB; Kane AL; Kotloski NJ; Intile PJ; Gralnick JA
    Appl Environ Microbiol; 2019 Aug; 85(16):. PubMed ID: 31175188
    [No Abstract]   [Full Text] [Related]  

  • 38. Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor.
    Carpentier W; De Smet L; Van Beeumen J; Brigé A
    J Bacteriol; 2005 May; 187(10):3293-301. PubMed ID: 15866913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime.
    Sturm G; Richter K; Doetsch A; Heide H; Louro RO; Gescher J
    ISME J; 2015 Aug; 9(8):1802-11. PubMed ID: 25635641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis.
    Schwalb C; Chapman SK; Reid GA
    Biochemistry; 2003 Aug; 42(31):9491-7. PubMed ID: 12899636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.