These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 34793591)
1. Cell3: A new vision for study of the endomembrane system in mammalian cells. Mysior MM; Simpson JC Biosci Rep; 2021 Nov; ():. PubMed ID: 34793591 [TBL] [Abstract][Full Text] [Related]
2. Cell3: a new vision for study of the endomembrane system in mammalian cells. Mysior MM; Simpson JC Biosci Rep; 2021 Dec; 41(12):. PubMed ID: 34874399 [TBL] [Abstract][Full Text] [Related]
3. A Robust Method for the Large-Scale Production of Spheroids for High-Content Screening and Analysis Applications. Chalkley AS; Mysior MM; Simpson JC J Vis Exp; 2021 Dec; (178):. PubMed ID: 35037665 [TBL] [Abstract][Full Text] [Related]
5. Molecular mechanisms of endomembrane trafficking in plants. Aniento F; Sánchez de Medina Hernández V; Dagdas Y; Rojas-Pierce M; Russinova E Plant Cell; 2022 Jan; 34(1):146-173. PubMed ID: 34550393 [TBL] [Abstract][Full Text] [Related]
6. Retrograde transport in plants: Circular economy in the endomembrane system. Zouhar J; Cao W; Shen J; Rojo E Eur J Cell Biol; 2023 Jun; 102(2):151309. PubMed ID: 36933283 [TBL] [Abstract][Full Text] [Related]
7. Mass spectrometry approaches to study plant endomembrane trafficking. Parsons HT; Lilley KS Semin Cell Dev Biol; 2018 Aug; 80():123-132. PubMed ID: 29042236 [TBL] [Abstract][Full Text] [Related]
8. Coping with Abiotic Stress in Plants-An Endomembrane Trafficking Perspective. Sampaio M; Neves J; Cardoso T; Pissarra J; Pereira S; Pereira C Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161321 [TBL] [Abstract][Full Text] [Related]
9. Toward understanding vesicle traffic and the guard cell model. Blatt MR New Phytol; 2002 Mar; 153(3):405-413. PubMed ID: 33863212 [TBL] [Abstract][Full Text] [Related]
10. Microfilaments in cellular and developmental processes. Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822 [TBL] [Abstract][Full Text] [Related]
11. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM Elife; 2020 Nov; 9():. PubMed ID: 33138918 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in plant endomembrane research and new microscopical techniques. Zeng Y; Liang Z; Liu Z; Li B; Cui Y; Gao C; Shen J; Wang X; Zhao Q; Zhuang X; Erdmann PS; Wong KB; Jiang L New Phytol; 2023 Oct; 240(1):41-60. PubMed ID: 37507353 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous 2D and 3D cell culture array for multicellular geometry, drug discovery and tumor microenvironment reconstruction. Li S; Yang K; Chen X; Zhu X; Zhou H; Li P; Chen Y; Jiang Y; Li T; Qin X; Yang H; Wu C; Ji B; You F; Liu Y Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34407511 [TBL] [Abstract][Full Text] [Related]
14. Quantitative image analysis approaches for probing Rab GTPase localization and function in mammalian cells. Singan VR; Handzic K; Simpson JC Biochem Soc Trans; 2012 Dec; 40(6):1389-93. PubMed ID: 23176486 [TBL] [Abstract][Full Text] [Related]
15. Progress in using chemical biology as a tool to uncover novel regulators of plant endomembrane trafficking. Huang L; Li X; Zhang C Curr Opin Plant Biol; 2019 Dec; 52():106-113. PubMed ID: 31546132 [TBL] [Abstract][Full Text] [Related]
16. New organelles by gene duplication in a biophysical model of eukaryote endomembrane evolution. Ramadas R; Thattai M Biophys J; 2013 Jun; 104(11):2553-63. PubMed ID: 23746528 [TBL] [Abstract][Full Text] [Related]
17. Spatio-temporal control of post-Golgi exocytic trafficking in plants. Elliott L; Moore I; Kirchhelle C J Cell Sci; 2020 Feb; 133(4):. PubMed ID: 32102937 [TBL] [Abstract][Full Text] [Related]