These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34793698)

  • 1. Minding the gaps: The importance of navigating holes in protein fitness landscapes.
    Thomas N; Colwell LJ
    Cell Syst; 2021 Nov; 12(11):1019-1020. PubMed ID: 34793698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Informed training set design enables efficient machine learning-assisted directed protein evolution.
    Wittmann BJ; Yue Y; Arnold FH
    Cell Syst; 2021 Nov; 12(11):1026-1045.e7. PubMed ID: 34416172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning protein fitness landscapes with deep mutational scanning data from multiple sources.
    Chen L; Zhang Z; Li Z; Li R; Huo R; Chen L; Wang D; Luo X; Chen K; Liao C; Zheng M
    Cell Syst; 2023 Aug; 14(8):706-721.e5. PubMed ID: 37591206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cluster learning-assisted directed evolution.
    Qiu Y; Hu J; Wei GW
    Nat Comput Sci; 2021 Dec; 1(12):809-818. PubMed ID: 35811998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning-driven Protein Library Design: A Path Toward Smarter Libraries.
    Mardikoraem M; Woldring D
    Methods Mol Biol; 2022; 2491():87-104. PubMed ID: 35482186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning to navigate fitness landscapes for protein engineering.
    Freschlin CR; Fahlberg SA; Romero PA
    Curr Opin Biotechnol; 2022 Jun; 75():102713. PubMed ID: 35413604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-assisted directed protein evolution with combinatorial libraries.
    Wu Z; Kan SBJ; Lewis RD; Wittmann BJ; Arnold FH
    Proc Natl Acad Sci U S A; 2019 Apr; 116(18):8852-8858. PubMed ID: 30979809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning to predict continuous protein properties from binary cell sorting data and map unseen sequence space.
    Case M; Smith M; Vinh J; Thurber G
    Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2311726121. PubMed ID: 38451939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational evolutionary design: the theory of in vitro protein evolution.
    Voigt CA; Kauffman S; Wang ZG
    Adv Protein Chem; 2000; 55():79-160. PubMed ID: 11050933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Navigating the landscape of enzyme design: from molecular simulations to machine learning.
    Zhou J; Huang M
    Chem Soc Rev; 2024 Jul; ():. PubMed ID: 38990263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of annealed protein fitness landscapes with AnnealDCA.
    Sesta L; Pagnani A; Fernandez-de-Cossio-Diaz J; Uguzzoni G
    PLoS Comput Biol; 2024 Feb; 20(2):e1011812. PubMed ID: 38377054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive models for population performance on real biological fitness landscapes.
    Rowe W; Wedge DC; Platt M; Kell DB; Knowles J
    Bioinformatics; 2010 Sep; 26(17):2145-52. PubMed ID: 20639542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine-learning a virus assembly fitness landscape.
    Dechant PP; He YH
    PLoS One; 2021; 16(5):e0250227. PubMed ID: 33951035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine-learning-guided directed evolution for protein engineering.
    Yang KK; Wu Z; Arnold FH
    Nat Methods; 2019 Aug; 16(8):687-694. PubMed ID: 31308553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring Future Landscapes: Sampling the Local Optima Level.
    Thomson SL; Ochoa G; Verel S; Veerapen N
    Evol Comput; 2020; 28(4):621-641. PubMed ID: 32101026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering.
    Yang J; Li FZ; Arnold FH
    ACS Cent Sci; 2024 Feb; 10(2):226-241. PubMed ID: 38435522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Complexity as an Ultimate Constraint on Evolution.
    Kaznatcheev A
    Genetics; 2019 May; 212(1):245-265. PubMed ID: 30833289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine-Learning-Guided Mutagenesis for Directed Evolution of Fluorescent Proteins.
    Saito Y; Oikawa M; Nakazawa H; Niide T; Kameda T; Tsuda K; Umetsu M
    ACS Synth Biol; 2018 Sep; 7(9):2014-2022. PubMed ID: 30103599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Host Species on Topography of the Fitness Landscape for a Plant RNA Virus.
    Cervera H; Lalić J; Elena SF
    J Virol; 2016 Nov; 90(22):10160-10169. PubMed ID: 27581976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FLIGHTED: Inferring Fitness Landscapes from Noisy High-Throughput Experimental Data.
    Sundar V; Tu B; Guan L; Esvelt K
    bioRxiv; 2024 Mar; ():. PubMed ID: 38586054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.