These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. RyR1-targeted drug discovery pipeline integrating FRET-based high-throughput screening and human myofiber dynamic Ca Rebbeck RT; Singh DP; Janicek KA; Bers DM; Thomas DD; Launikonis BS; Cornea RL Sci Rep; 2020 Feb; 10(1):1791. PubMed ID: 32019969 [TBL] [Abstract][Full Text] [Related]
4. Synergistic FRET assays for drug discovery targeting RyR2 channels. Rebbeck R; Ginsburg KS; Ko CY; Fasoli A; Rusch K; Cai GF; Dong X; Thomas DD; Bers DM; Cornea RL J Mol Cell Cardiol; 2022 Jul; 168():13-23. PubMed ID: 35405106 [TBL] [Abstract][Full Text] [Related]
5. S100A1 Protein Does Not Compete with Calmodulin for Ryanodine Receptor Binding but Structurally Alters the Ryanodine Receptor·Calmodulin Complex. Rebbeck RT; Nitu FR; Rohde D; Most P; Bers DM; Thomas DD; Cornea RL J Biol Chem; 2016 Jul; 291(30):15896-907. PubMed ID: 27226555 [TBL] [Abstract][Full Text] [Related]
6. Efficient High-Throughput Screening by Endoplasmic Reticulum Ca Murayama T; Kurebayashi N; Ishigami-Yuasa M; Mori S; Suzuki Y; Akima R; Ogawa H; Suzuki J; Kanemaru K; Oyamada H; Kiuchi Y; Iino M; Kagechika H; Sakurai T Mol Pharmacol; 2018 Jul; 94(1):722-730. PubMed ID: 29674523 [TBL] [Abstract][Full Text] [Related]
7. Assays for Modulators of Ryanodine Receptor (RyR)/Ca Murayama T; Kurebayashi N Curr Protoc Pharmacol; 2019 Dec; 87(1):e71. PubMed ID: 31834676 [TBL] [Abstract][Full Text] [Related]
8. Drug development for the treatment of RyR1-related skeletal muscle diseases. Murayama T; Kurebayashi N; Ishida R; Kagechika H Curr Opin Pharmacol; 2023 Apr; 69():102356. PubMed ID: 36842386 [TBL] [Abstract][Full Text] [Related]
9. Regulation of the skeletal muscle ryanodine receptor/Ca2+-release channel RyR1 by S-palmitoylation. Chaube R; Hess DT; Wang YJ; Plummer B; Sun QA; Laurita K; Stamler JS J Biol Chem; 2014 Mar; 289(12):8612-9. PubMed ID: 24509862 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a calcium-regulation domain of the skeletal-muscle ryanodine receptor. Hayek SM; Zhu X; Bhat MB; Zhao J; Takeshima H; Valdivia HH; Ma J Biochem J; 2000 Oct; 351(Pt 1):57-65. PubMed ID: 10998347 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence resonance energy transfer (FRET) indicates that association with the type I ryanodine receptor (RyR1) causes reorientation of multiple cytoplasmic domains of the dihydropyridine receptor (DHPR) α(1S) subunit. Polster A; Ohrtman JD; Beam KG; Papadopoulos S J Biol Chem; 2012 Nov; 287(49):41560-8. PubMed ID: 23071115 [TBL] [Abstract][Full Text] [Related]
12. Two EF-hand motifs in ryanodine receptor calcium release channels contribute to isoform-specific regulation by calmodulin. Xu L; Gomez AC; Pasek DA; Meissner G; Yamaguchi N Cell Calcium; 2017 Sep; 66():62-70. PubMed ID: 28807150 [TBL] [Abstract][Full Text] [Related]
13. FRET detection of calmodulin binding to the cardiac RyR2 calcium release channel. Guo T; Fruen BR; Nitu FR; Nguyen TD; Yang Y; Cornea RL; Bers DM Biophys J; 2011 Nov; 101(9):2170-7. PubMed ID: 22067155 [TBL] [Abstract][Full Text] [Related]
14. Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes. Murayama T; Kurebayashi N Prog Biophys Mol Biol; 2011 May; 105(3):134-44. PubMed ID: 21029746 [TBL] [Abstract][Full Text] [Related]
15. Mapping the ryanodine receptor FK506-binding protein subunit using fluorescence resonance energy transfer. Cornea RL; Nitu FR; Samsó M; Thomas DD; Fruen BR J Biol Chem; 2010 Jun; 285(25):19219-26. PubMed ID: 20404344 [TBL] [Abstract][Full Text] [Related]
17. Ca(2+) inactivation sites are located in the COOH-terminal quarter of recombinant rabbit skeletal muscle Ca(2+) release channels (ryanodine receptors). Du GG; MacLennan DH J Biol Chem; 1999 Sep; 274(37):26120-6. PubMed ID: 10473562 [TBL] [Abstract][Full Text] [Related]
18. Skeletal and cardiac ryanodine receptors exhibit different responses to Ca2+ overload and luminal ca2+. Kong H; Wang R; Chen W; Zhang L; Chen K; Shimoni Y; Duff HJ; Chen SR Biophys J; 2007 Apr; 92(8):2757-70. PubMed ID: 17259277 [TBL] [Abstract][Full Text] [Related]
19. Site-specific labeling of the type 1 ryanodine receptor using biarsenical fluorophores targeted to engineered tetracysteine motifs. Fessenden JD; Mahalingam M PLoS One; 2013; 8(5):e64686. PubMed ID: 23724080 [TBL] [Abstract][Full Text] [Related]
20. Different regions in skeletal and cardiac muscle ryanodine receptors are involved in transducing the functional effects of calmodulin. Yamaguchi N; Xu L; Evans KE; Pasek DA; Meissner G J Biol Chem; 2004 Aug; 279(35):36433-9. PubMed ID: 15215235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]