These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 34794036)
21. Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: Hydrochar properties and its combustion and pyrolysis behaviors. Zhang X; Zhang L; Li A Bioresour Technol; 2019 Dec; 294():122113. PubMed ID: 31542495 [TBL] [Abstract][Full Text] [Related]
22. Conversion of peach endocarp and polyethylene residue by the co-pyrolysis process. Valadão LS; Dos Santos Duarte C; de Los Santos DG; Filho PJS Environ Sci Pollut Res Int; 2022 Feb; 29(7):10702-10716. PubMed ID: 34528192 [TBL] [Abstract][Full Text] [Related]
23. Fermentation-pyrolysis of fibre waste from a paper recycling mill for the production of fuel products. Brown LJ; Collard FX; Gottumukkala LD; Görgens J Waste Manag; 2021 Feb; 120():364-372. PubMed ID: 33340818 [TBL] [Abstract][Full Text] [Related]
24. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils. Breyer S; Mekhitarian L; Rimez B; Haut B Waste Manag; 2017 Feb; 60():363-374. PubMed ID: 28063835 [TBL] [Abstract][Full Text] [Related]
25. Conventional pyrolysis of Plastic waste for Product recovery and utilization of pyrolytic gases for carbon nanotubes production. Singh RK; Ruj B; Sadhukhan AK; Gupta P Environ Sci Pollut Res Int; 2022 Mar; 29(14):20007-20016. PubMed ID: 33179183 [TBL] [Abstract][Full Text] [Related]
26. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste. Adrados A; de Marco I; Caballero BM; López A; Laresgoiti MF; Torres A Waste Manag; 2012 May; 32(5):826-32. PubMed ID: 21795037 [TBL] [Abstract][Full Text] [Related]
27. Characterization of pyrolysis products of high-ash excavated-waste and its char gasification reactivity and kinetics under a steam atmosphere. Zaini IN; García López C; Pretz T; Yang W; Jönsson PG Waste Manag; 2019 Sep; 97():149-163. PubMed ID: 31447022 [TBL] [Abstract][Full Text] [Related]
28. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals. Saeaung K; Phusunti N; Phetwarotai W; Assabumrungrat S; Cheirsilp B Waste Manag; 2021 May; 127():101-111. PubMed ID: 33932851 [TBL] [Abstract][Full Text] [Related]
29. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Papari S; Bamdad H; Berruti F Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677 [TBL] [Abstract][Full Text] [Related]
30. Separation properties of aluminium-plastic laminates in post-consumer Tetra Pak with mixed organic solvent. Zhang SF; Zhang LL; Luo K; Sun ZX; Mei XX Waste Manag Res; 2014 Apr; 32(4):317-22. PubMed ID: 24622294 [TBL] [Abstract][Full Text] [Related]
31. Recycling and reuse of waste agricultural plastics with hydrothermal pretreatment and low-temperature pyrolysis method. Chen B; Shen F; Tong L; Zhou J; Smith RL; Guo H Chemosphere; 2024 Aug; 362():142769. PubMed ID: 38969227 [TBL] [Abstract][Full Text] [Related]
32. Integrating PET chemical recycling with pyrolysis of mixed plastic waste via pressureless alkaline depolymerization in a hydrocarbon solvent. Konarova M; Batalha N; Fraga G; Ahmed MHM; Pratt S; Laycock B Waste Manag; 2024 Feb; 174():24-30. PubMed ID: 38000219 [TBL] [Abstract][Full Text] [Related]
33. Recycling of aluminium laminated pouches and Tetra Pak cartons by molten metal pyrolysis - Pilot-scale experiments and economic analysis. Riedewald F; Wilson E; Patel Y; Vogt D; Povey I; Barton K; Lewis L; Caris T; Santos S; O'Mahoney M; Sousa-Gallagher M Waste Manag; 2022 Feb; 138():172-179. PubMed ID: 34896737 [TBL] [Abstract][Full Text] [Related]
34. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Aboulkas A; Hammani H; El Achaby M; Bilal E; Barakat A; El Harfi K Bioresour Technol; 2017 Nov; 243():400-408. PubMed ID: 28688323 [TBL] [Abstract][Full Text] [Related]
35. Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design. Sekar M; Ponnusamy VK; Pugazhendhi A; Nižetić S; Praveenkumar TR J Environ Manage; 2022 Jan; 302(Pt B):114046. PubMed ID: 34775338 [TBL] [Abstract][Full Text] [Related]
36. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor. Kremer I; Tomić T; Katančić Z; Erceg M; Papuga S; Vuković JP; Schneider DR J Environ Manage; 2021 Oct; 296():113145. PubMed ID: 34271358 [TBL] [Abstract][Full Text] [Related]
37. Conversion of plastic waste into fuels: A critical review. Li N; Liu H; Cheng Z; Yan B; Chen G; Wang S J Hazard Mater; 2022 Feb; 424(Pt B):127460. PubMed ID: 34653868 [TBL] [Abstract][Full Text] [Related]
38. Application of an integrated pyrolysis and chemical leaching process for pulper waste conversion into coal, hydrogen and chemical flocculating agent. Salimbeni A; Di Bianca M; Maria Rizzo A; Chiaramonti D Waste Manag; 2024 Feb; 174():549-557. PubMed ID: 38134542 [TBL] [Abstract][Full Text] [Related]
39. Plastics to fuel or plastics: Life cycle assessment-based evaluation of different options for pyrolysis at end-of-life. Das S; Liang C; Dunn JB Waste Manag; 2022 Nov; 153():81-88. PubMed ID: 36055178 [TBL] [Abstract][Full Text] [Related]
40. Processing plastic waste via pyrolysis-thermolysis into hydrogen and solid carbon additive to ethylene-vinyl acetate foam for cushioning applications. Wang Y; Chang BP; Veksha A; Kashcheev A; Tok ALY; Lipik V; Yoshiie R; Ueki Y; Naruse I; Lisak G J Hazard Mater; 2024 Feb; 464():132996. PubMed ID: 37988865 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]