BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34794049)

  • 1. Blue, green, and grey water footprints assessment for paddy irrigation-drainage system.
    Wu M; Li Y; Xiao J; Guo X; Cao X
    J Environ Manage; 2022 Jan; 302(Pt B):114116. PubMed ID: 34794049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water footprint assessment for crop production based on field measurements: A case study of irrigated paddy rice in East China.
    Xinchun C; Mengyang W; Rui S; La Z; Dan C; Guangcheng S; Xiangping G; Weiguang W; Shuhai T
    Sci Total Environ; 2018 Jan; 610-611():84-93. PubMed ID: 28803205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive analysis of water resources from the perspective of water footprint and water ecological footprint: a case study from Anyang City, China.
    Ma X; Jiao S
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):2086-2102. PubMed ID: 35930150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainability assessment on paddy-upland crop rotations by carbon, nitrogen and water footprint integrated analysis: A field scale investigation.
    Yue Q; Sheng J; Cheng K; Zhang Y; Guo Z; Sun G; Wang S
    J Environ Manage; 2023 Aug; 339():117879. PubMed ID: 37068399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Quantifying direct N2O emissions from paddy fields during rice growing season in China: model establishment].
    Zou JW; Qin YM; Liu SW
    Huan Jing Ke Xue; 2009 Feb; 30(2):313-21. PubMed ID: 19402475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-source data-based spatial variations of blue and green water footprints for rice production in Jilin Province, China.
    Li B; Qin L; Wang J; Dang Y; He H
    Environ Sci Pollut Res Int; 2021 Jul; 28(28):38106-38116. PubMed ID: 33728606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].
    Zhou JW; Su BL; Huang NB; Guan YT; Zhao K
    Huan Jing Ke Xue; 2016 Mar; 37(3):963-9. PubMed ID: 27337888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency.
    Xiong Y; Peng S; Luo Y; Xu J; Yang S
    Environ Sci Pollut Res Int; 2015 Mar; 22(6):4406-17. PubMed ID: 25304242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of water-saving irrigation on the residues and risk of polycyclic aromatic hydrocarbon in paddy field.
    Zhao Z; Xia L; Jiang X; Gao Y
    Sci Total Environ; 2018 Mar; 618():736-745. PubMed ID: 29054619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).
    Zhuo L; Mekonnen MM; Hoekstra AY
    Water Res; 2016 May; 94():73-85. PubMed ID: 26938494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of the water footprint of rice production under different rainfall years in Jilin Province, China.
    Li H; Qin L; He H
    J Sci Food Agric; 2018 Jun; 98(8):3001-3013. PubMed ID: 29193107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of biochar addition on CO
    Yang S; Sun X; Ding J; Jiang Z; Liu X; Xu J
    J Environ Manage; 2020 Oct; 271():111029. PubMed ID: 32778309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the characteristics and driving forces of water footprint productivity in paddy rice cultivation in China.
    Chen S; Wu M; Cao X; Guo X
    J Sci Food Agric; 2020 Mar; 100(4):1764-1774. PubMed ID: 31849058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yield, water, and carbon footprint of rainfed rice production under the lens of mid-century climate change: a case study in the eastern coastal agro-climatic zone, Odisha, India.
    Behera SS; Ojha CSP; Prasad KSH; Dash SS
    Environ Monit Assess; 2023 Apr; 195(5):544. PubMed ID: 37017873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The water use of Indian diets and socio-demographic factors related to dietary blue water footprint.
    Harris F; Green RF; Joy EJ; Kayatz B; Haines A; Dangour AD
    Sci Total Environ; 2017 Jun; 587-588():128-136. PubMed ID: 28215793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of the urban water footprint and blue water scarcity: A case study for Van (Turkey).
    Yerli C; Sahin U
    Braz J Biol; 2021; 82():e249745. PubMed ID: 34231666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-resolution assessment of climate change impact on water footprints of cereal production in India.
    Mali SS; Shirsath PB; Islam A
    Sci Rep; 2021 Apr; 11(1):8715. PubMed ID: 33888847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards quantification of the national water footprint in rice production of China: A first assessment from the perspectives of single-double rice.
    Zheng J; Wang W; Liu G; Ding Y; Cao X; Chen D; Engel BA
    Sci Total Environ; 2020 Oct; 739():140032. PubMed ID: 32758949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance analyses of effective rainfall estimation methods for accurate quantification of agricultural water footprint.
    Muratoglu A; Bilgen GK; Angin I; Kodal S
    Water Res; 2023 Jun; 238():120011. PubMed ID: 37148693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of irrigation-drainage unit on phosphorus interception in paddy field system.
    Hua L; Zhai L; Liu J; Liu H; Zhang F; Fan X
    J Environ Manage; 2019 Apr; 235():319-327. PubMed ID: 30703646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.