These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 34794126)
1. A supervised machine learning semantic segmentation approach for detecting artifacts in plethysmography signals from wearables. Guo Z; Ding C; Hu X; Rudin C Physiol Meas; 2021 Dec; 42(12):. PubMed ID: 34794126 [No Abstract] [Full Text] [Related]
2. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises. Pankaj ; Kumar A; Komaragiri R; Kumar M Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340 [TBL] [Abstract][Full Text] [Related]
3. A supervised learning approach for the robust detection of heart beat in plethysmographic data. Grisan E; Cantisani G; Tarroni G; Seung Keun Yoon ; Rossi M Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5825-8. PubMed ID: 26737616 [TBL] [Abstract][Full Text] [Related]
4. Robust PPG motion artifact detection using a 1-D convolution neural network. Goh CH; Tan LK; Lovell NH; Ng SC; Tan MP; Lim E Comput Methods Programs Biomed; 2020 Nov; 196():105596. PubMed ID: 32580054 [TBL] [Abstract][Full Text] [Related]
5. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features. Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791 [TBL] [Abstract][Full Text] [Related]
6. Anomaly Detection in Multi-Wavelength Photoplethysmography Using Lightweight Machine Learning Algorithms. Baciu VE; Lambert Cause J; Solé Morillo Á; García-Naranjo JC; Stiens J; da Silva B Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571730 [TBL] [Abstract][Full Text] [Related]
7. A Supervised Approach to Robust Photoplethysmography Quality Assessment. Pereira T; Gadhoumi K; Ma M; Liu X; Xiao R; Colorado RA; Keenan KJ; Meisel K; Hu X IEEE J Biomed Health Inform; 2020 Mar; 24(3):649-657. PubMed ID: 30951482 [TBL] [Abstract][Full Text] [Related]
8. Multi-Headed Conv-LSTM Network for Heart Rate Estimation during Daily Living Activities. Wilkosz M; Szczęsna A Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372447 [TBL] [Abstract][Full Text] [Related]
9. SPARE: A Spectral Peak Recovery Algorithm for PPG Signals Pulsewave Reconstruction in Multimodal Wearable Devices. Masinelli G; Dell'Agnola F; Valdés AA; Atienza D Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924351 [TBL] [Abstract][Full Text] [Related]
10. Deep learning approaches for plethysmography signal quality assessment in the presence of atrial fibrillation. Pereira T; Ding C; Gadhoumi K; Tran N; Colorado RA; Meisel K; Hu X Physiol Meas; 2019 Dec; 40(12):125002. PubMed ID: 31766037 [TBL] [Abstract][Full Text] [Related]
12. Design of a Realtime Photoplethysmogram Signal Quality Checker for Wearables and Edge Computing. Banerjee T; Gavas RD; Bs M; Karmakar S; Ramakrishnan RK; Pal A Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1323-1326. PubMed ID: 36086651 [TBL] [Abstract][Full Text] [Related]
13. Smartwatch Based Atrial Fibrillation Detection from Photoplethysmography Signals. Bashar SK; Han D; Ding E; Whitcomb C; McManus DD; Chon KH Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4306-4309. PubMed ID: 31946820 [TBL] [Abstract][Full Text] [Related]
14. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation. Wójcikowski M; Pankiewicz B Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210 [TBL] [Abstract][Full Text] [Related]
15. Comparison and Combination of Single-Lead ECG and Photoplethysmography Algorithms for Wearable-Based Atrial Fibrillation Screening. Mutke MR; Brasier N; Raichle C; Ravanelli F; Doerr M; Eckstein J Telemed J E Health; 2021 Mar; 27(3):296-302. PubMed ID: 32423358 [No Abstract] [Full Text] [Related]
16. BioTranslator: Inferring R-Peaks from Ambulatory Wrist-Worn PPG Signal. Everson L; Biswas D; Verhoef BE; Kim CH; Van Hoof C; Konijnenburg M; Van Helleputte N Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4241-4245. PubMed ID: 31946805 [TBL] [Abstract][Full Text] [Related]
17. Q-PPG: Energy-Efficient PPG-Based Heart Rate Monitoring on Wearable Devices. Burrello A; Pagliari DJ; Risso M; Benatti S; Macii E; Benini L; Poncino M IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1196-1209. PubMed ID: 34673496 [TBL] [Abstract][Full Text] [Related]
18. Optimized Signal Quality Assessment for Photoplethysmogram Signals Using Feature Selection. Mohagheghian F; Han D; Peitzsch A; Nishita N; Ding E; Dickson EL; DiMezza D; Otabil EM; Noorishirazi K; Scott J; Lessard D; Wang Z; Whitcomb C; Tran KV; Fitzgibbons TP; McManus DD; Chon KH IEEE Trans Biomed Eng; 2022 Sep; 69(9):2982-2993. PubMed ID: 35275809 [TBL] [Abstract][Full Text] [Related]
19. Feasibility Study of Deep Neural Network for Heart Rate Estimation from Wearable Photoplethysmography and Acceleration Signals. Chung H; Ko H; Lee H; Lee J Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3633-3636. PubMed ID: 31946663 [TBL] [Abstract][Full Text] [Related]
20. Motion Artifact Reduction in Wearable Photoplethysmography Based on Multi-Channel Sensors with Multiple Wavelengths. Lee J; Kim M; Park HK; Kim IY Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]