These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34794405)

  • 1. Clinicians' experiences of using and implementing a medical mobile phone app (QUiPP V2) designed to predict the risk of preterm birth and aid clinical decision making.
    Carlisle N; Watson HA; Carter J; Kuhrt K; Seed PT; Tribe RM; Sandall J; Shennan AH
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):320. PubMed ID: 34794405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the use of the QUiPP app and its impact on the management of threatened preterm labour: A cluster randomised trial.
    Watson HA; Carlisle N; Seed PT; Carter J; Kuhrt K; Tribe RM; Shennan AH
    PLoS Med; 2021 Jul; 18(7):e1003689. PubMed ID: 34228735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EQUIPTT: The Evaluation of the QUiPP app for Triage and Transfer protocol for a cluster randomised trial to evaluate the impact of the QUiPP app on inappropriate management for threatened preterm labour.
    Watson HA; Carlisle N; Kuhrt K; Tribe RM; Carter J; Seed P; Shennan AH
    BMC Pregnancy Childbirth; 2019 Feb; 19(1):68. PubMed ID: 30760248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of a medical mobile phone app (QUiPP) for predicting preterm birth on the anxiety and decisional conflicts faced by women in threatened preterm labour.
    Carlisle N; Watson HA; Seed PT; Carter J; Kuhrt K; Tribe RM; Shennan AH
    Midwifery; 2021 Jan; 92():102864. PubMed ID: 33137547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ten women's decision-making experiences in threatened preterm labour: Qualitative findings from the EQUIPTT trial.
    Carlisle N; Watson HA; Kuhrt K; Carter J; Seed PT; Tribe RM; Sandall J; Shennan AH
    Sex Reprod Healthc; 2021 Sep; 29():100611. PubMed ID: 33882392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and rapid rollout of The QUiPP App Toolkit for women who arrive in threatened preterm labour.
    Carlisle N; Watson HA; Shennan AH
    BMJ Open Qual; 2021 May; 10(2):. PubMed ID: 33958354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preterm labour decision-making and experiences of care for women and clinicians (QUIDS Qualitative): A qualitative exploration.
    White H; Morton VH; Stock SJ; Lavender T
    Sex Reprod Healthc; 2019 Oct; 21():95-101. PubMed ID: 31395241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of predictive models for QUiPP App v.2: tool for predicting preterm birth in women with symptoms of threatened preterm labor.
    Carter J; Seed PT; Watson HA; David AL; Sandall J; Shennan AH; Tribe RM
    Ultrasound Obstet Gynecol; 2020 Mar; 55(3):357-367. PubMed ID: 31385343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The QUiPP App: a safe alternative to a treat-all strategy for threatened preterm labor.
    Watson HA; Carter J; Seed PT; Tribe RM; Shennan AH
    Ultrasound Obstet Gynecol; 2017 Sep; 50(3):342-346. PubMed ID: 28436125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of QUiPP prediction algorithm on treatment decisions in women with a previous preterm birth: a prospective cohort study.
    Goodfellow L; Care A; Sharp A; Ivandic J; Poljak B; Roberts D; Alfirevic Z
    BJOG; 2019 Dec; 126(13):1569-1575. PubMed ID: 31339631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of QUiPP App v.2 tool for prediction of preterm birth in asymptomatic high-risk women attending preterm specialist clinic: external validation study.
    Creswell L; Rolnik DL; Burke B; Daly S; O'Gorman N
    Ultrasound Obstet Gynecol; 2024 Jul; 64(1):71-78. PubMed ID: 38379428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Threatened preterm labour: Women's experiences of risk and care management: A qualitative study.
    Carter J; Tribe RM; Shennan AH; Sandall J
    Midwifery; 2018 Sep; 64():85-92. PubMed ID: 29990628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinicians' views and experiences of offering two alternative consent pathways for participation in a preterm intrapartum trial: a qualitative study.
    Chhoa CY; Sawyer A; Ayers S; Pushpa-Rajah A; Duley L
    Trials; 2017 Apr; 18(1):196. PubMed ID: 28446203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preterm Birth: Screening and Prediction.
    Creswell L; Rolnik DL; Lindow SW; O'Gorman N
    Int J Womens Health; 2023; 15():1981-1997. PubMed ID: 38146587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of recurrent preterm delivery in asymptomatic women- an anxiety reducing measure?
    Petch S; DeMaio A; Daly S
    Eur J Obstet Gynecol Reprod Biol X; 2019 Oct; 4():100064. PubMed ID: 31673690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study protocol: quantitative fibronectin to help decision-making in women with symptoms of preterm labour (QUIDS) part 2, UK Prospective Cohort Study.
    Stock SJ; Wotherspoon LM; Boyd KA; Morris RK; Dorling J; Jackson L; Chandiramani M; David AL; Khalil A; Shennan A; Hodgetts Morton V; Lavender T; Khan K; Harper-Clarke S; Mol B; Riley RD; Norrie J; Norman J
    BMJ Open; 2018 Apr; 8(4):e020795. PubMed ID: 29674373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinicians' views of factors influencing decision-making for CS for first-time mothers-A qualitative descriptive study.
    Panda S; Begley C; Daly D
    PLoS One; 2022; 17(12):e0279403. PubMed ID: 36576912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AI-driven decision support systems and epistemic reliance: a qualitative study on obstetricians' and midwives' perspectives on integrating AI-driven CTG into clinical decision making.
    Dlugatch R; Georgieva A; Kerasidou A
    BMC Med Ethics; 2024 Jan; 25(1):6. PubMed ID: 38184595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The web-based application "QUiPP v.2" for the prediction of preterm birth in symptomatic women is not yet ready for worldwide clinical use: ten reflections on development, validation and use.
    Dehaene I; Steen J; Vandewiele G; Roelens K; Decruyenaere J
    Arch Gynecol Obstet; 2022 Aug; 306(2):571-575. PubMed ID: 35106643
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.