These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. ICG-labeled PD-L1-antagonistic affibody dimer for tumor imaging and enhancement of tumor photothermal-immunotherapy. Jia D; Zhao S; Liu H; Zhan X; Zhou Z; Lv M; Tang X; Guo W; Li H; Sun L; Zhong Y; Tian B; Yuan D; Tang X; Fan Q Int J Biol Macromol; 2024 Jun; 269(Pt 2):132058. PubMed ID: 38704065 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen-Peroxide-Responsive Protein Biomimetic Nanoparticles for Photothermal-Photodynamic Combination Therapy of Melanoma. Wen L; Hyoju R; Wang P; Shi L; Li C; Li M; Wang X Lasers Surg Med; 2021 Mar; 53(3):390-399. PubMed ID: 32596824 [TBL] [Abstract][Full Text] [Related]
4. Multifunctional Nanoparticles-Mediated PTT/PDT Synergistic Immune Activation and Antitumor Activity Combined with Anti-PD-L1 Immunotherapy for Breast Cancer Treatment. Kong C; Xu B; Qiu G; Wei M; Zhang M; Bao S; Tang J; Li L; Liu J Int J Nanomedicine; 2022; 17():5391-5411. PubMed ID: 36419717 [TBL] [Abstract][Full Text] [Related]
5. Metabolic reprogramming mediated PD-L1 depression and hypoxia reversion to reactivate tumor therapy. Zhou Z; Liu Y; Song W; Jiang X; Deng Z; Xiong W; Shen J J Control Release; 2022 Dec; 352():793-812. PubMed ID: 36343761 [TBL] [Abstract][Full Text] [Related]
6. Photothermally activatable PDA immune nanomedicine combined with PD-L1 checkpoint blockade for antimetastatic cancer photoimmunotherapy. Lu Q; Qi S; Li P; Yang L; Yang S; Wang Y; Cheng Y; Song Y; Wang S; Tan F; Li N J Mater Chem B; 2019 Apr; 7(15):2499-2511. PubMed ID: 32255127 [TBL] [Abstract][Full Text] [Related]
7. Second near-infrared photothermal-amplified immunotherapy using photoactivatable composite nanostimulators. Sun H; Yu T; Li X; Lei Y; Li J; Wang X; Peng P; Ni D; Wang X; Luo Y J Nanobiotechnology; 2021 Dec; 19(1):433. PubMed ID: 34930269 [TBL] [Abstract][Full Text] [Related]
8. GSH/pH dual response drug delivery system for photothermal enhanced gene-immunotherapy. Ma T; Li W; Ye J; Huang C; Li Y; Qiu H; Yin S Nanoscale; 2023 Nov; 15(42):16947-16958. PubMed ID: 37779508 [TBL] [Abstract][Full Text] [Related]
9. Engineering of small molecular organic nanoparticles for mitochondria-targeted mild photothermal therapy of malignant breast cancers. Hu Q; He C; Lu Z; He Y; Xie H; Li J; Fu Z; Guo B Biomater Sci; 2022 Oct; 10(20):6013-6023. PubMed ID: 36069330 [TBL] [Abstract][Full Text] [Related]
10. Combining dual-targeted liquid metal nanoparticles with autophagy activation and mild photothermal therapy to treat metastatic breast cancer and inhibit bone destruction. Shen Y; Zou Y; Bie B; Dong C; Lv Y Acta Biomater; 2023 Feb; 157():578-592. PubMed ID: 36442822 [TBL] [Abstract][Full Text] [Related]
11. Lipid-Polymer Hybrid Nanoparticles with Both PD-L1 Knockdown and Mild Photothermal Effect for Tumor Photothermal Immunotherapy. Chuan D; Fan R; Chen B; Ren Y; Mu M; Chen H; Zou B; Dong H; Tong A; Guo G ACS Appl Mater Interfaces; 2023 Sep; 15(36):42209-42226. PubMed ID: 37605506 [TBL] [Abstract][Full Text] [Related]
12. A combination strategy based on an Au nanorod/doxorubicin gel via mild photothermal therapy combined with antigen-capturing liposomes and anti-PD-L1 agent promote a positive shift in the cancer-immunity cycle. Feng ZH; Li ZT; Zhang S; Wang JR; Li ZY; Xu MQ; Li H; Zhang SQ; Wang GX; Liao A; Zhang X Acta Biomater; 2021 Dec; 136():495-507. PubMed ID: 34619371 [TBL] [Abstract][Full Text] [Related]
13. Precision USPIO-PEG-SLe Li T; Guo L; Li J; Mu X; Liu L; Song S; Luo N; Zhang Q; Zheng B; Jin G Int J Nanomedicine; 2024; 19():1249-1272. PubMed ID: 38348177 [TBL] [Abstract][Full Text] [Related]
14. Quercetin-ferrum nanoparticles enhance photothermal therapy by modulating the tumor immunosuppressive microenvironment. Li L; Zhang M; Liu T; Li J; Sun S; Chen J; Liu Z; Zhang Z; Zhang L Acta Biomater; 2022 Dec; 154():454-466. PubMed ID: 36243377 [TBL] [Abstract][Full Text] [Related]
15. Self-delivery photothermal-boosted-nanobike multi-overcoming immune escape by photothermal/chemical/immune synergistic therapy against HCC. Yang H; Mu W; Yuan S; Yang H; Chang L; Sang X; Gao T; Liang S; Liu X; Fu S; Zhang Z; Liu Y; Zhang N J Nanobiotechnology; 2024 Mar; 22(1):137. PubMed ID: 38553725 [TBL] [Abstract][Full Text] [Related]
16. Gelatinase-sensitive nanoparticles loaded with photosensitizer and STAT3 inhibitor for cancer photothermal therapy and immunotherapy. Bu LL; Wang HQ; Pan Y; Chen L; Wu H; Wu X; Zhao C; Rao L; Liu B; Sun ZJ J Nanobiotechnology; 2021 Nov; 19(1):379. PubMed ID: 34802438 [TBL] [Abstract][Full Text] [Related]
17. Indocyanine green and poly I:C containing thermo-responsive liposomes used in immune-photothermal therapy prevent cancer growth and metastasis. Xu L; Zhang W; Park HB; Kwak M; Oh J; Lee PCW; Jin JO J Immunother Cancer; 2019 Aug; 7(1):220. PubMed ID: 31412934 [TBL] [Abstract][Full Text] [Related]
18. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Huang L; Li Y; Du Y; Zhang Y; Wang X; Ding Y; Yang X; Meng F; Tu J; Luo L; Sun C Nat Commun; 2019 Oct; 10(1):4871. PubMed ID: 31653838 [TBL] [Abstract][Full Text] [Related]
19. Polymeric PD-L1 blockade nanoparticles for cancer photothermal-immunotherapy. Yu Y; Li J; Song B; Ma Z; Zhang Y; Sun H; Wei X; Bai Y; Lu X; Zhang P; Zhang X Biomaterials; 2022 Jan; 280():121312. PubMed ID: 34896861 [TBL] [Abstract][Full Text] [Related]
20. Combining PD-L1 inhibitors with immunogenic cell death triggered by chemo-photothermal therapy via a thermosensitive liposome system to stimulate tumor-specific immunological response. Yu J; He X; Wang Z; Wang Y; Liu S; Li X; Huang Y Nanoscale; 2021 Aug; 13(30):12966-12978. PubMed ID: 34477780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]