These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34794583)

  • 21. ATP-sensitive potassium channels: structures, functions, and pathophysiology.
    Inagaki N; Seino S
    Jpn J Physiol; 1998 Dec; 48(6):397-412. PubMed ID: 10021494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular aspects of ATP-sensitive K+ channels in the cardiovascular system and K+ channel openers.
    Fujita A; Kurachi Y
    Pharmacol Ther; 2000 Jan; 85(1):39-53. PubMed ID: 10674713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. N-terminal transmembrane domain of SUR1 controls gating of Kir6.2 by modulating channel sensitivity to PIP2.
    Pratt EB; Tewson P; Bruederle CE; Skach WR; Shyng SL
    J Gen Physiol; 2011 Mar; 137(3):299-314. PubMed ID: 21321069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mechano-sensitivity of cardiac ATP-sensitive potassium channels is mediated by intrinsic MgATPase activity.
    Fatehi M; Carter CC; Youssef N; Light PE
    J Mol Cell Cardiol; 2017 Jul; 108():34-41. PubMed ID: 28483598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two regions of sulfonylurea receptor specify the spontaneous bursting and ATP inhibition of KATP channel isoforms.
    Babenko AP; Gonzalez G; Bryan J
    J Biol Chem; 1999 Apr; 274(17):11587-92. PubMed ID: 10206966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels.
    Wu JX; Ding D; Wang M; Kang Y; Zeng X; Chen L
    Protein Cell; 2018 Jun; 9(6):553-567. PubMed ID: 29594720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells.
    Yokoshiki H; Sunagawa M; Seki T; Sperelakis N
    Am J Physiol; 1998 Jan; 274(1):C25-37. PubMed ID: 9458709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphatidylinositol 4,5-biphosphate (PIP2) modulates syntaxin-1A binding to sulfonylurea receptor 2A to regulate cardiac ATP-sensitive potassium (KATP) channels.
    Xie L; Liang T; Kang Y; Lin X; Sobbi R; Xie H; Chao C; Backx P; Feng ZP; Shyng SL; Gaisano HY
    J Mol Cell Cardiol; 2014 Oct; 75():100-10. PubMed ID: 25073062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Kir6.2 pore mutation causes inactivation of ATP-sensitive potassium channels by disrupting PIP2-dependent gating.
    Bushman JD; Zhou Q; Shyng SL
    PLoS One; 2013; 8(5):e63733. PubMed ID: 23700433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlating structure and function in ATP-sensitive K+ channels.
    Ashcroft FM; Gribble FM
    Trends Neurosci; 1998 Jul; 21(7):288-94. PubMed ID: 9683320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Kir6.2-F333I mutation differentially modulates KATP channels composed of SUR1 or SUR2 subunits.
    Tammaro P; Ashcroft F
    J Physiol; 2007 Jun; 581(Pt 3):1259-69. PubMed ID: 17395632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potassium channel openers require ATP to bind to and act through sulfonylurea receptors.
    Schwanstecher M; Sieverding C; Dörschner H; Gross I; Aguilar-Bryan L; Schwanstecher C; Bryan J
    EMBO J; 1998 Oct; 17(19):5529-35. PubMed ID: 9755153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward understanding the assembly and structure of KATP channels.
    Aguilar-Bryan L; Clement JP; Gonzalez G; Kunjilwar K; Babenko A; Bryan J
    Physiol Rev; 1998 Jan; 78(1):227-45. PubMed ID: 9457174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineered interaction between SUR1 and Kir6.2 that enhances ATP sensitivity in KATP channels.
    Pratt EB; Zhou Q; Gay JW; Shyng SL
    J Gen Physiol; 2012 Aug; 140(2):175-87. PubMed ID: 22802363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. KATP channel interaction with adenine nucleotides.
    Matsuo M; Kimura Y; Ueda K
    J Mol Cell Cardiol; 2005 Jun; 38(6):907-16. PubMed ID: 15910875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stabilization of the activity of ATP-sensitive potassium channels by ion pairs formed between adjacent Kir6.2 subunits.
    Lin YW; Jia T; Weinsoft AM; Shyng SL
    J Gen Physiol; 2003 Aug; 122(2):225-37. PubMed ID: 12885877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long chain coenzyme A esters activate the pore-forming subunit (Kir6. 2) of the ATP-regulated potassium channel.
    Bränström R; Leibiger IB; Leibiger B; Corkey BE; Berggren PO; Larsson O
    J Biol Chem; 1998 Nov; 273(47):31395-400. PubMed ID: 9813050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for direct physical association between a K+ channel (Kir6.2) and an ATP-binding cassette protein (SUR1) which affects cellular distribution and kinetic behavior of an ATP-sensitive K+ channel.
    Lorenz E; Alekseev AE; Krapivinsky GB; Carrasco AJ; Clapham DE; Terzic A
    Mol Cell Biol; 1998 Mar; 18(3):1652-9. PubMed ID: 9488482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit.
    Antcliff JF; Haider S; Proks P; Sansom MS; Ashcroft FM
    EMBO J; 2005 Jan; 24(2):229-39. PubMed ID: 15650751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulfonylurea receptors regulate the channel pore in ATP-sensitive potassium channels via an intersubunit salt bridge.
    Lodwick D; Rainbow RD; Rubaiy HN; Al Johi M; Vuister GW; Norman RI
    Biochem J; 2014 Dec; 464(3):343-54. PubMed ID: 25236767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.