These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34794806)

  • 1. Tri-functional SERS nanoplatform with tunable plasmonic property for synergistic antibacterial activity and antibacterial process monitoring.
    Chen J; Yang J; Chen W; Wang Y; Song G; He H; Wang H; Li P; Wang GP
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2266-2277. PubMed ID: 34794806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilizing Enzymes in Plasmonic Silk Film for Synergistic Therapy of In Situ SERS Identified Bacteria.
    Liu Z; Li S; Yin Z; Zhu Z; Chen L; Tan W; Chen Z
    Adv Sci (Weinh); 2022 Feb; 9(6):e2104576. PubMed ID: 34989177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indocyanine green-loaded gold nanostars for sensitive SERS imaging and subcellular monitoring of photothermal therapy.
    Chen J; Sheng Z; Li P; Wu M; Zhang N; Yu XF; Wang Y; Hu D; Zheng H; Wang GP
    Nanoscale; 2017 Aug; 9(33):11888-11901. PubMed ID: 28561825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of dual plasmonic core-shell Ag@CuS nanoparticles for potential surface-enhanced Raman spectroscopy-guided photothermal therapy.
    Das A; Arunagiri V; Tsai HC; Prasannan A; Lai JY; Da-Hong P; Moirangthem RS
    Nanomedicine (Lond); 2021 May; 16(11):909-923. PubMed ID: 33928793
    [No Abstract]   [Full Text] [Related]  

  • 5. Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria.
    Hu B; Wang N; Han L; Chen ML; Wang JH
    Acta Biomater; 2015 Jan; 11():511-9. PubMed ID: 25219350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells.
    Chang J; Zhang A; Huang Z; Chen Y; Zhang Q; Cui D
    Talanta; 2019 Jun; 198():45-54. PubMed ID: 30876586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of Ultrabright SERS Probes with Embedded Reporters for Bioimaging and Photothermal Therapy.
    Jin X; Khlebtsov BN; Khanadeev VA; Khlebtsov NG; Ye J
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30387-30397. PubMed ID: 28825458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triple-Function Au-Ag-Stuffed Nanopancakes for SERS Detection, Discrimination, and Inactivation of Multiple Bacteria.
    Zhou S; Guo X; Huang H; Huang X; Zhou X; Zhang Z; Sun G; Cai H; Zhou H; Sun P
    Anal Chem; 2022 Apr; 94(15):5785-5796. PubMed ID: 35343684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold-silver alloy hollow nanoshells-based lateral flow immunoassay for colorimetric, photothermal, and SERS tri-mode detection of SARS-CoV-2 neutralizing antibody.
    Zhao T; Liang P; Ren J; Zhu J; Yang X; Bian H; Li J; Cui X; Fu C; Xing J; Wen C; Zeng J
    Anal Chim Acta; 2023 May; 1255():341102. PubMed ID: 37032051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of Au@Ag core-shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice.
    Chen Z; Sun Y; Shi J; Zhang W; Zhang X; Huang X; Zou X; Li Z; Wei R
    Food Chem; 2022 Feb; 370():131276. PubMed ID: 34662790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a SERS Sensing Nanoplatform with Self-Sterilization for Undifferentiated and Rapid Detection of Bacteria.
    Cao J; Zhu W; Zhou J; Zhao BC; Pan YY; Ye Y; Shen AG
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Gold/Silver Hybrid Nanoparticle for Treatment and Photoacoustic Imaging of Bacterial Infection.
    Kim T; Zhang Q; Li J; Zhang L; Jokerst JV
    ACS Nano; 2018 Jun; 12(6):5615-5625. PubMed ID: 29746090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bull serum albumin coated Au@Agnanorods as SERS probes for ultrasensitive osteosarcoma cell detection.
    Yue J; Liu Z; Cai X; Ding X; Chen S; Tao K; Zhao T
    Talanta; 2016 Apr; 150():503-9. PubMed ID: 26838436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monodispersed silver-gold nanorods controllable etching for ultrasensitive SERS detection of hydrogen peroxide-involved metabolites.
    Zhang R; Zhong Q; Liu Y; Ji J; Liu B
    Talanta; 2022 Jun; 243():123382. PubMed ID: 35303552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalized Au
    Liu HB; Chen CY; Zhang CN; Du XJ; Li P; Wang S
    J Food Sci; 2019 Oct; 84(10):2916-2924. PubMed ID: 31502678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS.
    Zhang Y; Yang P; Habeeb Muhammed MA; Alsaiari SK; Moosa B; Almalik A; Kumar A; Ringe E; Khashab NM
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37597-37605. PubMed ID: 28990755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lab-On-Capillary Platform for On-Site Quantitative SERS Analysis of Surface Contaminants Based on Au@4-MBA@Ag Core-Shell Nanorods.
    Lin S; Hasi W; Lin X; Han S; Xiang T; Liang S; Wang L
    ACS Sens; 2020 May; 5(5):1465-1473. PubMed ID: 32268725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers.
    Zeng L; Pan Y; Wang S; Wang X; Zhao X; Ren W; Lu G; Wu A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16781-91. PubMed ID: 26204589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal ablation of target cancer cells using polydopamine-encapsulated gold nanorods as multifunctional agents.
    Sun C; Gao M; Zhang X
    Anal Bioanal Chem; 2017 Aug; 409(20):4915-4926. PubMed ID: 28585085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy.
    Cui L; Chen P; Chen S; Yuan Z; Yu C; Ren B; Zhang K
    Anal Chem; 2013 Jun; 85(11):5436-43. PubMed ID: 23656550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.