These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 3479507)
21. Central projection of proprioceptive afferents arising from maxillo-facial regions in some animals studied by HRP-labeling technique. Kubota K; Narita N; Ohkubo K; Hosaka K; Nagae K; Lee MS; Kawamoto T; Kubota M; Odagiri N Anat Anz; 1988; 165(2-3):229-51. PubMed ID: 3400886 [TBL] [Abstract][Full Text] [Related]
22. [Muscle afferent block in the treatment of oromandibular dystonia. Difference in effect between masticatory and lingual muscles]. Yoshida K Nervenarzt; 2003 Jun; 74(6):516-22. PubMed ID: 12799790 [TBL] [Abstract][Full Text] [Related]
23. Functional properties of single neurons in the face primary motor cortex of the primate. I. Input and output features of tongue motor cortex. Murray GM; Sessle BJ J Neurophysiol; 1992 Mar; 67(3):747-58. PubMed ID: 1578252 [TBL] [Abstract][Full Text] [Related]
24. Relationship between jaw movements and trigeminal motoneuron membrane-potential fluctuations during cortically induced rhythmical jaw movements in the guinea pig. Goldberg LJ; Chandler SH; Tal M J Neurophysiol; 1982 Jul; 48(1):110-38. PubMed ID: 7119840 [No Abstract] [Full Text] [Related]
25. Inputs from identified jaw-muscle spindle afferents to trigeminothalamic neurons in the rat: a double-labeling study using retrograde HRP and intracellular biotinamide. Luo P; Dessem D J Comp Neurol; 1995 Feb; 353(1):50-66. PubMed ID: 7714249 [TBL] [Abstract][Full Text] [Related]
26. [Masticatory muscles. Part VIII. Reflexes in the masticatory system]. van der Glas HW; Bosman F; van der Bilt A Ned Tijdschr Tandheelkd; 1998 Feb; 105(2):42-5. PubMed ID: 11928388 [TBL] [Abstract][Full Text] [Related]
27. Two types of jaw-muscle spindle afferents in the cat as demonstrated by intra-axonal staining with HRP. Shigenaga Y; Mitsuhiro Y; Shirana Y; Tsuru H Brain Res; 1990 Apr; 514(2):219-37. PubMed ID: 2357539 [TBL] [Abstract][Full Text] [Related]
28. The projection of jaw elevator muscle spindle afferents to fifth nerve motoneurones in the cat. Appenteng K; O'Donovan MJ; Somjen G; Stephens JA; Taylor A J Physiol; 1978 Jun; 279():409-23. PubMed ID: 149860 [TBL] [Abstract][Full Text] [Related]
29. Proceedings: 272. Inhibition of hypoglossal motoneurons by jaw opening muscle afferents. Takata M; Ito K Nihon Seirigaku Zasshi; 1973; 35(8):496-7. PubMed ID: 4799737 [No Abstract] [Full Text] [Related]
30. Putative feed-forward control of jaw-closing muscle activity during rhythmic jaw movements in the anesthetized rabbit. Komuro A; Morimoto T; Iwata K; Inoue T; Masuda Y; Kato T; Hidaka O J Neurophysiol; 2001 Dec; 86(6):2834-44. PubMed ID: 11731540 [TBL] [Abstract][Full Text] [Related]
31. Some aspects of neurophysiology of dental interest. II. Oral reflexes and neural oscillators. Thexton AJ J Dent; 1974 Jul; 2(4):131-7. PubMed ID: 4613744 [No Abstract] [Full Text] [Related]
32. Primary- and secondary-like jaw-muscle spindle afferents have characteristic topographic distributions. Dessem D; Donga R; Luo P J Neurophysiol; 1997 Jun; 77(6):2925-44. PubMed ID: 9212247 [TBL] [Abstract][Full Text] [Related]
33. Neurophysiological mechanisms related to reflex control of tongue movements. Kawamura Y; Morimoto T Symp Oral Sens Percept; 1973; (4):206-17. PubMed ID: 4612815 [No Abstract] [Full Text] [Related]
34. Discharge of spindle afferents from jaw-closing muscles during chewing in alert monkeys. Goodwin GM; Luschei ES J Neurophysiol; 1975 May; 38(3):560-71. PubMed ID: 123950 [TBL] [Abstract][Full Text] [Related]
35. Human jaw muscle motor behaviour. I. Motor drive. Hellsing G Swed Dent J; 1987; 11(6):251-61. PubMed ID: 2964735 [TBL] [Abstract][Full Text] [Related]
36. Transition from suckling to drinking at weaning: a kinematic and electromyographic study in miniature pigs. Thexton AJ; Crompton AW; German RZ J Exp Zool; 1998 Apr; 280(5):327-43. PubMed ID: 9503654 [TBL] [Abstract][Full Text] [Related]
37. Cortical control of mastication in cats. 2. Deficits of masticatory movements following a lesion in the motor cortex. Hiraba H; Sato T Somatosens Mot Res; 2005 Sep; 22(3):183-92. PubMed ID: 16338826 [TBL] [Abstract][Full Text] [Related]
38. Cerebral control of face, jaw, and tongue movements in awake cats: changes in regional cerebral blood flow during lateral feeding. Hiraba H; Sato T Somatosens Mot Res; 2005 Dec; 22(4):307-17. PubMed ID: 16503583 [TBL] [Abstract][Full Text] [Related]
39. Distribution of the chain of stretch receptors on masticatory muscles of the rat. Yamamoto T; Sakada S Bull Tokyo Dent Coll; 1990 Nov; 31(4):283-8. PubMed ID: 2133447 [TBL] [Abstract][Full Text] [Related]
40. Intracellular analysis of synaptic mechanisms controlling spontaneous and cortically induced rhythmical jaw movements in the guinea pig. Chandler SH; Goldberg LJ J Neurophysiol; 1982 Jul; 48(1):126-38. PubMed ID: 7119841 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]