These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 34795101)
1. Are Semantic Annotators Able to Extract Relevant Complexity-Related Concepts from Clinical Notes? Redjdal A; Bouaud J; Gligorov J; Séroussi B Stud Health Technol Inform; 2021 Nov; 287():153-157. PubMed ID: 34795101 [TBL] [Abstract][Full Text] [Related]
2. Comparison of MetaMap, cTAKES, SIFR, and ECMT to Annotate Breast Cancer Patient Summaries. Redjdal A; Bouaud J; Gligorov J; Séroussi B Stud Health Technol Inform; 2022 Jun; 290():187-191. PubMed ID: 35672997 [TBL] [Abstract][Full Text] [Related]
3. RysannMD: A biomedical semantic annotator balancing speed and accuracy. Cuzzola J; Jovanović J; Bagheri E J Biomed Inform; 2017 Jul; 71():91-109. PubMed ID: 28552401 [TBL] [Abstract][Full Text] [Related]
4. Comparison of MetaMap and cTAKES for entity extraction in clinical notes. Reátegui R; Ratté S BMC Med Inform Decis Mak; 2018 Sep; 18(Suppl 3):74. PubMed ID: 30255810 [TBL] [Abstract][Full Text] [Related]
5. Use of "off-the-shelf" information extraction algorithms in clinical informatics: A feasibility study of MetaMap annotation of Italian medical notes. Chiaramello E; Pinciroli F; Bonalumi A; Caroli A; Tognola G J Biomed Inform; 2016 Oct; 63():22-32. PubMed ID: 27444186 [TBL] [Abstract][Full Text] [Related]
6. Deep Learning, a Not so Magical Problem Solver: A Case Study with Predicting the Complexity of Breast Cancer Cases. Le Thien MA; Redjdal A; Bouaud J; Seroussi B Stud Health Technol Inform; 2021 Nov; 287():144-148. PubMed ID: 34795099 [TBL] [Abstract][Full Text] [Related]
7. Leveraging Rule-Based NLP to Translate Textual Reports as Structured Inputs Automatically Processed by a Clinical Decision Support System. Redjdal A; Novikava N; Kempf E; Bouaud J; Seroussi B Stud Health Technol Inform; 2024 Aug; 316():1861-1865. PubMed ID: 39176854 [TBL] [Abstract][Full Text] [Related]
8. Clinical Concept Extraction with Lexical Semantics to Support Automatic Annotation. Abbas A; Afzal M; Hussain J; Ali T; Bilal HSM; Lee S; Jeon S Int J Environ Res Public Health; 2021 Oct; 18(20):. PubMed ID: 34682315 [TBL] [Abstract][Full Text] [Related]
9. Structuring Clinical Decision Support Rules for Drug Safety Using Natural Language Processing. Despotou G; Korkontzelos I; Matragkas N; Bilici E; Arvanitis TN Stud Health Technol Inform; 2018; 251():89-92. PubMed ID: 29968609 [TBL] [Abstract][Full Text] [Related]
10. Natural language processing (NLP) tools in extracting biomedical concepts from research articles: a case study on autism spectrum disorder. Peng J; Zhao M; Havrilla J; Liu C; Weng C; Guthrie W; Schultz R; Wang K; Zhou Y BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 11):322. PubMed ID: 33380331 [TBL] [Abstract][Full Text] [Related]
11. Methods Used to Compare Narrative Clinical Practice Guidelines: A Scoping Review. Azarpira M; Redjdal A; Bouaud J; Seroussi B Stud Health Technol Inform; 2022 Jun; 295():304-307. PubMed ID: 35773869 [TBL] [Abstract][Full Text] [Related]
12. SIFR annotator: ontology-based semantic annotation of French biomedical text and clinical notes. Tchechmedjiev A; Abdaoui A; Emonet V; Zevio S; Jonquet C BMC Bioinformatics; 2018 Nov; 19(1):405. PubMed ID: 30400805 [TBL] [Abstract][Full Text] [Related]
13. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
14. Semantic annotation in biomedicine: the current landscape. Jovanović J; Bagheri E J Biomed Semantics; 2017 Sep; 8(1):44. PubMed ID: 28938912 [TBL] [Abstract][Full Text] [Related]
15. Which breast cancer decisions remain non-compliant with guidelines despite the use of computerised decision support? Séroussi B; Laouénan C; Gligorov J; Uzan S; Mentré F; Bouaud J Br J Cancer; 2013 Sep; 109(5):1147-56. PubMed ID: 23942076 [TBL] [Abstract][Full Text] [Related]
16. Automated identification of wound information in clinical notes of patients with heart diseases: Developing and validating a natural language processing application. Topaz M; Lai K; Dowding D; Lei VJ; Zisberg A; Bowles KH; Zhou L Int J Nurs Stud; 2016 Dec; 64():25-31. PubMed ID: 27668855 [TBL] [Abstract][Full Text] [Related]
17. A frame semantic overview of NLP-based information extraction for cancer-related EHR notes. Datta S; Bernstam EV; Roberts K J Biomed Inform; 2019 Dec; 100():103301. PubMed ID: 31589927 [TBL] [Abstract][Full Text] [Related]
18. Using Semantic Technologies to Extract Highlights from Care Notes. Lopez V; Mccarthy G; Bettencourt-Silva J; Sbodio M; Mulligan N; Cucci F; Deparis S; Hennessy C; Yadav N; Kelly K; Olsen R; Cullen C; Kotoulas S Stud Health Technol Inform; 2017; 245():1331. PubMed ID: 29295412 [TBL] [Abstract][Full Text] [Related]
19. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414 [TBL] [Abstract][Full Text] [Related]
20. Natural language processing of German clinical colorectal cancer notes for guideline-based treatment evaluation. Becker M; Kasper S; Böckmann B; Jöckel KH; Virchow I Int J Med Inform; 2019 Jul; 127():141-146. PubMed ID: 31128826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]