BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 34795215)

  • 1. Genetic fusions favor tumorigenesis through degron loss in oncogenes.
    Liu J; Tokheim C; Lee JD; Gan W; North BJ; Liu XS; Pandolfi PP; Wei W
    Nat Commun; 2021 Nov; 12(1):6704. PubMed ID: 34795215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PPP1R1B-STARD3 chimeric fusion transcript in human gastric cancer promotes tumorigenesis through activation of PI3K/AKT signaling.
    Yun SM; Yoon K; Lee S; Kim E; Kong SH; Choe J; Kang JM; Han TS; Kim P; Choi Y; Jho S; Yoo H; Bhak J; Yang HK; Kim SJ
    Oncogene; 2014 Nov; 33(46):5341-7. PubMed ID: 24276243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
    Gao Q; Liang WW; Foltz SM; Mutharasu G; Jayasinghe RG; Cao S; Liao WW; Reynolds SM; Wyczalkowski MA; Yao L; Yu L; Sun SQ; ; ; Chen K; Lazar AJ; Fields RC; Wendl MC; Van Tine BA; Vij R; Chen F; Nykter M; Shmulevich I; Ding L
    Cell Rep; 2018 Apr; 23(1):227-238.e3. PubMed ID: 29617662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic interaction between Tmprss2-ERG gene fusion and Nkx3.1-loss does not enhance prostate tumorigenesis in mouse models.
    Linn DE; Bronson RT; Li Z
    PLoS One; 2015; 10(3):e0120628. PubMed ID: 25780911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CCDC6, a gene product in fusion with different protoncogenes, as a potential chemotherapeutic target.
    Laxmi A; Gupta P; Gupta J
    Cancer Biomark; 2019; 24(4):383-393. PubMed ID: 30909182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma.
    Parker BC; Annala MJ; Cogdell DE; Granberg KJ; Sun Y; Ji P; Li X; Gumin J; Zheng H; Hu L; Yli-Harja O; Haapasalo H; Visakorpi T; Liu X; Liu CG; Sawaya R; Fuller GN; Chen K; Lang FF; Nykter M; Zhang W
    J Clin Invest; 2013 Feb; 123(2):855-65. PubMed ID: 23298836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting interactome network perturbations in human cancer: application to gene fusions in acute lymphoblastic leukemia.
    Hajingabo LJ; Daakour S; Martin M; Grausenburger R; Panzer-Grümayer R; Dequiedt F; Simonis N; Twizere JC
    Mol Biol Cell; 2014 Dec; 25(24):3973-85. PubMed ID: 25273558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Three Novel Fusion Oncogenes, SQSTM1/NTRK3, AFAP1L2/RET, and PPFIBP2/RET, in Thyroid Cancers of Young Patients in Fukushima.
    Iyama K; Matsuse M; Mitsutake N; Rogounovitch T; Saenko V; Suzuki K; Ashizawa M; Ookouchi C; Suzuki S; Mizunuma H; Fukushima T; Suzuki S; Yamashita S
    Thyroid; 2017 Jun; 27(6):811-818. PubMed ID: 28351223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rare but Recurrent ROS1 Fusions Resulting From Chromosome 6q22 Microdeletions are Targetable Oncogenes in Glioma.
    Davare MA; Henderson JJ; Agarwal A; Wagner JP; Iyer SR; Shah N; Woltjer R; Somwar R; Gilheeney SW; DeCarvalo A; Mikkelson T; Van Meir EG; Ladanyi M; Druker BJ
    Clin Cancer Res; 2018 Dec; 24(24):6471-6482. PubMed ID: 30171048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models.
    Okamoto K; Kodama K; Takase K; Sugi NH; Yamamoto Y; Iwata M; Tsuruoka A
    Cancer Lett; 2013 Oct; 340(1):97-103. PubMed ID: 23856031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene fusions in tumourigenesis with particular reference to ovarian cancer.
    Zhou Y; El-Bahrawy M
    J Med Genet; 2021 Dec; 58(12):789-795. PubMed ID: 34462289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer.
    Tomlins SA; Laxman B; Dhanasekaran SM; Helgeson BE; Cao X; Morris DS; Menon A; Jing X; Cao Q; Han B; Yu J; Wang L; Montie JE; Rubin MA; Pienta KJ; Roulston D; Shah RB; Varambally S; Mehra R; Chinnaiyan AM
    Nature; 2007 Aug; 448(7153):595-9. PubMed ID: 17671502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer.
    Lu H; Villafane N; Dogruluk T; Grzeskowiak CL; Kong K; Tsang YH; Zagorodna O; Pantazi A; Yang L; Neill NJ; Kim YW; Creighton CJ; Verhaak RG; Mills GB; Park PJ; Kucherlapati R; Scott KL
    Cancer Res; 2017 Jul; 77(13):3502-3512. PubMed ID: 28512244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oncogenic function and clinical implications of SLC3A2-NRG1 fusion in invasive mucinous adenocarcinoma of the lung.
    Shin DH; Lee D; Hong DW; Hong SH; Hwang JA; Lee BI; You HJ; Lee GK; Kim IH; Lee YS; Han JY
    Oncotarget; 2016 Oct; 7(43):69450-69465. PubMed ID: 27626312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of tumor-associated YAP1 fusions identifies a recurrent set of functions critical for oncogenesis.
    Szulzewsky F; Arora S; Hoellerbauer P; King C; Nathan E; Chan M; Cimino PJ; Ozawa T; Kawauchi D; Pajtler KW; Gilbertson RJ; Paddison PJ; Vasioukhin V; Gujral TS; Holland EC
    Genes Dev; 2020 Aug; 34(15-16):1051-1064. PubMed ID: 32675324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. annoFuse: an R Package to annotate, prioritize, and interactively explore putative oncogenic RNA fusions.
    Gaonkar KS; Marini F; Rathi KS; Jain P; Zhu Y; Chimicles NA; Brown MA; Naqvi AS; Zhang B; Storm PB; Maris JM; Raman P; Resnick AC; Strauch K; Taroni JN; Rokita JL
    BMC Bioinformatics; 2020 Dec; 21(1):577. PubMed ID: 33317447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering and understanding oncogenic gene fusions through data intensive computational approaches.
    Latysheva NS; Babu MM
    Nucleic Acids Res; 2016 Jun; 44(10):4487-503. PubMed ID: 27105842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. YAP1 subgroup supratentorial ependymoma requires TEAD and nuclear factor I-mediated transcriptional programmes for tumorigenesis.
    Pajtler KW; Wei Y; Okonechnikov K; Silva PBG; Vouri M; Zhang L; Brabetz S; Sieber L; Gulley M; Mauermann M; Wedig T; Mack N; Imamura Kawasawa Y; Sharma T; Zuckermann M; Andreiuolo F; Holland E; Maass K; Körkel-Qu H; Liu HK; Sahm F; Capper D; Bunt J; Richards LJ; Jones DTW; Korshunov A; Chavez L; Lichter P; Hoshino M; Pfister SM; Kool M; Li W; Kawauchi D
    Nat Commun; 2019 Sep; 10(1):3914. PubMed ID: 31477715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RET rearrangements are actionable alterations in breast cancer.
    Paratala BS; Chung JH; Williams CB; Yilmazel B; Petrosky W; Williams K; Schrock AB; Gay LM; Lee E; Dolfi SC; Pham K; Lin S; Yao M; Kulkarni A; DiClemente F; Liu C; Rodriguez-Rodriguez L; Ganesan S; Ross JS; Ali SM; Leyland-Jones B; Hirshfield KM
    Nat Commun; 2018 Nov; 9(1):4821. PubMed ID: 30446652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Cell-Free DNA from 32,989 Advanced Cancers Reveals Novel Co-occurring Activating
    Rich TA; Reckamp KL; Chae YK; Doebele RC; Iams WT; Oh M; Raymond VM; Lanman RB; Riess JW; Stinchcombe TE; Subbiah V; Trevarthen DR; Fairclough S; Yen J; Gautschi O
    Clin Cancer Res; 2019 Oct; 25(19):5832-5842. PubMed ID: 31300450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.