BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34795227)

  • 21. A data-independent acquisition (DIA)-based quantification workflow for proteome analysis of 5000 cells.
    Jiang N; Gao Y; Xu J; Luo F; Zhang X; Chen R
    J Pharm Biomed Anal; 2022 Jul; 216():114795. PubMed ID: 35489320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New targeted approaches for the quantification of data-independent acquisition mass spectrometry.
    Bruderer R; Sondermann J; Tsou CC; Barrantes-Freer A; Stadelmann C; Nesvizhskii AI; Schmidt M; Reiter L; Gomez-Varela D
    Proteomics; 2017 May; 17(9):. PubMed ID: 28319648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry.
    Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K
    J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries.
    Pino LK; Just SC; MacCoss MJ; Searle BC
    Mol Cell Proteomics; 2020 Jul; 19(7):1088-1103. PubMed ID: 32312845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. iPhos: a toolkit to streamline the alkaline phosphatase-assisted comprehensive LC-MS phosphoproteome investigation.
    Yang TH; Chang HT; Hsiao ES; Sun JL; Wang CC; Wu HY; Liao PC; Wu WS
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S10. PubMed ID: 25521246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sample Size-Comparable Spectral Library Enhances Data-Independent Acquisition-Based Proteome Coverage of Low-Input Cells.
    Siyal AA; Chen ES; Chan HJ; Kitata RB; Yang JC; Tu HL; Chen YJ
    Anal Chem; 2021 Dec; 93(51):17003-17011. PubMed ID: 34904835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive Liquid Chromatography, and Mass Spectrometry.
    Bai B; Tan H; Pagala VR; High AA; Ichhaporia VP; Hendershot L; Peng J
    Methods Enzymol; 2017; 585():377-395. PubMed ID: 28109439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systematic Optimization of Automated Phosphopeptide Enrichment for High-Sensitivity Phosphoproteomics.
    Bortel P; Piga I; Koenig C; Gerner C; Martinez-Val A; Olsen JV
    Mol Cell Proteomics; 2024 May; 23(5):100754. PubMed ID: 38548019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MaxDIA enables library-based and library-free data-independent acquisition proteomics.
    Sinitcyn P; Hamzeiy H; Salinas Soto F; Itzhak D; McCarthy F; Wichmann C; Steger M; Ohmayer U; Distler U; Kaspar-Schoenefeld S; Prianichnikov N; Yılmaz Ş; Rudolph JD; Tenzer S; Perez-Riverol Y; Nagaraj N; Humphrey SJ; Cox J
    Nat Biotechnol; 2021 Dec; 39(12):1563-1573. PubMed ID: 34239088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid and In-Depth Coverage of the (Phospho-)Proteome With Deep Libraries and Optimal Window Design for dia-PASEF.
    Skowronek P; Thielert M; Voytik E; Tanzer MC; Hansen FM; Willems S; Karayel O; Brunner AD; Meier F; Mann M
    Mol Cell Proteomics; 2022 Sep; 21(9):100279. PubMed ID: 35944843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry.
    Mertins P; Tang LC; Krug K; Clark DJ; Gritsenko MA; Chen L; Clauser KR; Clauss TR; Shah P; Gillette MA; Petyuk VA; Thomas SN; Mani DR; Mundt F; Moore RJ; Hu Y; Zhao R; Schnaubelt M; Keshishian H; Monroe ME; Zhang Z; Udeshi ND; Mani D; Davies SR; Townsend RR; Chan DW; Smith RD; Zhang H; Liu T; Carr SA
    Nat Protoc; 2018 Jul; 13(7):1632-1661. PubMed ID: 29988108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Customized Consensus Spectral Library Building for Untargeted Quantitative Metabolomics Analysis with Data Independent Acquisition Mass Spectrometry and MetaboDIA Workflow.
    Chen G; Walmsley S; Cheung GCM; Chen L; Cheng CY; Beuerman RW; Wong TY; Zhou L; Choi H
    Anal Chem; 2017 May; 89(9):4897-4906. PubMed ID: 28391692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Data Processing and Analysis for DIA-Based Phosphoproteomics Using Spectronaut.
    Martinez-Val A; Bekker-Jensen DB; Hogrebe A; Olsen JV
    Methods Mol Biol; 2021; 2361():95-107. PubMed ID: 34236657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells.
    Bridon G; Bonneil E; Muratore-Schroeder T; Caron-Lizotte O; Thibault P
    J Proteome Res; 2012 Feb; 11(2):927-40. PubMed ID: 22059388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients.
    Bekker-Jensen DB; Martínez-Val A; Steigerwald S; Rüther P; Fort KL; Arrey TN; Harder A; Makarov A; Olsen JV
    Mol Cell Proteomics; 2020 Apr; 19(4):716-729. PubMed ID: 32051234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PASS-DIA: A Data-Independent Acquisition Approach for Discovery Studies.
    Mun DG; Renuse S; Saraswat M; Madugundu A; Udainiya S; Kim H; Park SR; Zhao H; Nirujogi RS; Na CH; Kannan N; Yates JR; Lee SW; Pandey A
    Anal Chem; 2020 Nov; 92(21):14466-14475. PubMed ID: 33079518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry.
    Searle BC; Pino LK; Egertson JD; Ting YS; Lawrence RT; MacLean BX; Villén J; MacCoss MJ
    Nat Commun; 2018 Dec; 9(1):5128. PubMed ID: 30510204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal analytical strategies for sensitive and quantitative phosphoproteomics using TMT-based multiplexing.
    Koenig C; Martinez-Val A; Franciosa G; Olsen JV
    Proteomics; 2022 Oct; 22(19-20):e2100245. PubMed ID: 35713889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A High-Sensitivity Low-Nanoflow LC-MS Configuration for High-Throughput Sample-Limited Proteomics.
    Zheng R; Matzinger M; Mayer RL; Valenta A; Sun X; Mechtler K
    Anal Chem; 2023 Dec; 95(51):18673-18678. PubMed ID: 38088903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid Shotgun Phosphoproteomics Analysis.
    Carrera M; Cañas B; Lopez-Ferrer D
    Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.