BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34795278)

  • 1. Generation of a Gluconobacter oxydans knockout collection for improved extraction of rare earth elements.
    Schmitz AM; Pian B; Medin S; Reid MC; Wu M; Gazel E; Barstow B
    Nat Commun; 2021 Nov; 12(1):6693. PubMed ID: 34795278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.
    Hölscher T; Görisch H
    J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Synthesis of pyrroloquinoline quinone by recombinant Gluconobacter oxydans].
    Ye R; Li F; Ding F; Zhao Z; Chen S; Yuan J
    Sheng Wu Gong Cheng Xue Bao; 2020 Jun; 36(6):1138-1149. PubMed ID: 32597063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pyrroloquinoline quinone synthesis genes of Gluconobacter oxydans.
    Felder M; Gupta A; Verma V; Kumar A; Qazi GN; Cullum J
    FEMS Microbiol Lett; 2000 Dec; 193(2):231-6. PubMed ID: 11111029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinational expression of D-sorbitol dehydrogenase and pyrroloquinoline quinone increases 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production by Gluconobacter oxydans through cofactor manipulation.
    Liu D; Ke X; Hu ZC; Zheng YG
    Enzyme Microb Technol; 2020 Nov; 141():109670. PubMed ID: 33051020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans.
    Hölscher T; Schleyer U; Merfort M; Bringer-Meyer S; Görisch H; Sahm H
    J Mol Microbiol Biotechnol; 2009; 16(1-2):6-13. PubMed ID: 18957858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster.
    Yang XP; Zhong GF; Lin JP; Mao DB; Wei DZ
    J Ind Microbiol Biotechnol; 2010 Jun; 37(6):575-80. PubMed ID: 20213113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic improvement of PQQ-dependent D-sorbitol dehydrogenase activity from Gluconobacter oxydans for the biosynthesis of miglitol precursor 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose.
    Ke X; Pan-Hong Y; Hu ZC; Chen L; Sun XQ; Zheng YG
    J Biotechnol; 2019 Jul; 300():55-62. PubMed ID: 31100333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for production of 6-(2-hydroxyethyl) amino-6-deoxy-L-sorbose.
    Yang XP; Wei LJ; Lin JP; Yin B; Wei DZ
    Appl Environ Microbiol; 2008 Aug; 74(16):5250-3. PubMed ID: 18502922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of high 2-KLG concentration on expression of pivotal genes involved in 2-KLG synthesis in Gluconobacter oxydans WSH-003].
    Wan H; Kang Z; Li J; Zhou J
    Wei Sheng Wu Xue Bao; 2016 Oct; 56(10):1656-63. PubMed ID: 29741828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J; Wu M; Lin J; Yang L
    BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Isolation PQQ biosynthesis gene cluster from Gluconobacter oxydans based on sorbose-dehydrogenase activity].
    Gao S; Xiong X; Wang J; Zhang W
    Wei Sheng Wu Xue Bao; 2010 Aug; 50(8):1104-8. PubMed ID: 20931881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The first in-depth exploration of the genome of the engineered bacterium, Gluconobacter thailandicus.
    Liu X; Ali A; Liu C; Liu Y; Zhang P
    Biotechnol Appl Biochem; 2022 Jun; 69(3):1190-1198. PubMed ID: 34009642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly selective oxidation of benzyl alcohol using engineered Gluconobacter oxydans in biphasic system.
    Wu J; Li MH; Lin JP; Wei DZ
    Curr Microbiol; 2011 Apr; 62(4):1123-7. PubMed ID: 21140150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering CRISPR interference system to enhance the production of pyrroloquinoline quinone in Klebsiella pneumonia.
    Mi Z; Sun Z; Huang Z; Zhao P; Li Q; Tian P
    Lett Appl Microbiol; 2020 Sep; 71(3):242-250. PubMed ID: 32394472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane-bound sorbitol dehydrogenase is responsible for the unique oxidation of D-galactitol to L-xylo-3-hexulose and D-tagatose in Gluconobacter oxydans.
    Xu Y; Ji L; Xu S; Bilal M; Ehrenreich A; Deng Z; Cheng H
    Biochim Biophys Acta Gen Subj; 2023 Feb; 1867(2):130289. PubMed ID: 36503080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.
    Meyer M; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3457-66. PubMed ID: 22790543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Gluconobacter oxydans 621H for increased biomass yield.
    Kiefler I; Bringer S; Bott M
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5453-5467. PubMed ID: 28484812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid.
    Elfari M; Ha SW; Bremus C; Merfort M; Khodaverdi V; Herrmann U; Sahm H; Görisch H
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):668-74. PubMed ID: 15735967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.