BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34795684)

  • 1. Overexpression of 1-Aminocyclopropane-1-Carboxylic Acid Deaminase (
    Naing AH; Jeong HY; Jung SK; Kim CK
    Front Plant Sci; 2021; 12():737490. PubMed ID: 34795684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of
    Naing AH; Campol JR; Chung MY; Kim CK
    Cells; 2022 Oct; 11(20):. PubMed ID: 36291065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of acdS in petunia reduces ethylene production and improves tolerance to heat stress.
    Baek S; Naing AH; Kang H; Chung MY; Kim CK
    Plant Biol (Stuttg); 2024 Jun; ():. PubMed ID: 38858861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of acdS gene encoding 1-aminocyclopropane-1-carboxylic acid deaminase enzyme in petunia negatively affects seed germination.
    Naing AH; Campol JR; Jeong HY; Chung MY; Kim WC; Kim CK
    Plant Cell Rep; 2022 Nov; 41(11):2201-2211. PubMed ID: 35988098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding
    Heydarian Z; Yu M; Gruber M; Glick BR; Zhou R; Hegedus DD
    Front Microbiol; 2016; 7():1966. PubMed ID: 28018305
    [No Abstract]   [Full Text] [Related]  

  • 6. Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress.
    Gontia-Mishra I; Sasidharan S; Tiwari S
    Biotechnol Lett; 2014 May; 36(5):889-98. PubMed ID: 24563292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemistry and genetics of ACC deaminase: a weapon to "stress ethylene" produced in plants.
    Singh RP; Shelke GM; Kumar A; Jha PN
    Front Microbiol; 2015; 6():937. PubMed ID: 26441873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial ACC deaminase: Insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants.
    Shahid M; Singh UB; Khan MS; Singh P; Kumar R; Singh RN; Kumar A; Singh HV
    Front Microbiol; 2023; 14():1132770. PubMed ID: 37180266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspective of ACC-deaminase producing bacteria in stress agriculture.
    Singh RP; Ma Y; Shadan A
    J Biotechnol; 2022 Jun; 352():36-46. PubMed ID: 35597331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of ACO4 in petunia improves abiotic stress tolerance by reducing the deleterious effects of stress-induced ethylene.
    Naing AH; Baek S; Campol JR; Kang H; Kim CK
    Plant Physiol Biochem; 2023 Oct; 203():107998. PubMed ID: 37678091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ACC deaminase-producing plant growth-promoting bacteria: Influences of bacterial strains and ACC deaminase activities in plant tolerance to abiotic stress.
    Naing AH; Maung TT; Kim CK
    Physiol Plant; 2021 Dec; 173(4):1992-2012. PubMed ID: 34487352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase Gene in
    Liu CH; Siew W; Hung YT; Jiang YT; Huang CH
    J Agric Food Chem; 2021 Jan; 69(3):913-921. PubMed ID: 33464897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Editing of 1-aminocyclopropane-1-carboxylate oxidase genes negatively affects petunia seed germination.
    Naing AH; Xu J; Kim CK
    Plant Cell Rep; 2022 Jan; 41(1):209-220. PubMed ID: 34665313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression patterns in shoots of Camelina sativa with enhanced salinity tolerance provided by plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression of the corresponding acdS gene.
    Heydarian Z; Gruber M; Coutu C; Glick BR; Hegedus DD
    Sci Rep; 2021 Feb; 11(1):4260. PubMed ID: 33608579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of ACC deaminase producing bacteria for abiotic stress management and sustainable agriculture production.
    Chandwani S; Amaresan N
    Environ Sci Pollut Res Int; 2022 Apr; 29(16):22843-22859. PubMed ID: 35050477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant-Root Exudate Analogues Influence Activity of the 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Gene in
    Sorty AM; Ntana F; Hansen M; Stougaard P
    Microorganisms; 2023 Oct; 11(10):. PubMed ID: 37894162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Ethylene Biosynthesis Genes in the Regulation of Salt Stress and Drought Stress Tolerance in Petunia.
    Naing AH; Campol JR; Kang H; Xu J; Chung MY; Kim CK
    Front Plant Sci; 2022; 13():844449. PubMed ID: 35283920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative effects of ethylene inhibitors on Agrobacterium-mediated transformation of drought-tolerant wild watermelon.
    Malambane G; Nonaka S; Shiba H; Ezura H; Tsujimoto H; Akashi K
    Biosci Biotechnol Biochem; 2018 Mar; 82(3):433-441. PubMed ID: 29424269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of 1-aminocyclopropane-1-carboxylate (ACC) deaminase from its homologs is the key for identifying bacteria containing ACC deaminase.
    Li Z; Chang S; Ye S; Chen M; Lin L; Li Y; Li S; An Q
    FEMS Microbiol Ecol; 2015 Oct; 91(10):. PubMed ID: 26362924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture.
    Saleem M; Arshad M; Hussain S; Bhatti AS
    J Ind Microbiol Biotechnol; 2007 Oct; 34(10):635-48. PubMed ID: 17665234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.