BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34796015)

  • 1. A Method for Recording the Bioelectrical Activity of Neural Axons upon Stimulation with Short Pulses of Infrared Laser Radiation.
    Pigareva YI; Antipova OO; Kolpakov VN; Martynova OV; Popova AA; Mukhina IV; Pimashkin AS; Es'kin VA
    Sovrem Tekhnologii Med; 2021; 12(6):21-27. PubMed ID: 34796015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recording large extracellular spikes in microchannels along many axonal sites from individual neurons.
    Lewandowska MK; Bakkum DJ; Rompani SB; Hierlemann A
    PLoS One; 2015; 10(3):e0118514. PubMed ID: 25734567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacing Microfluidics with Microelectrode Arrays for Studying Neuronal Communication and Axonal Signal Propagation.
    Lopes CDF; Mateus JC; Aguiar P
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30582587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microchannel device tailored to laser axotomy and long-term microelectrode array electrophysiology of functional regeneration.
    Habibey R; Golabchi A; Latifi S; Difato F; Blau A
    Lab Chip; 2015 Dec; 15(24):4578-90. PubMed ID: 26507288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared Laser Pulses Excite Action Potentials in Primary Cortex Neurons In Vitro
    Xia QL; Wang MQ; Jiang B; Hu N; Wu XY; Hou WS; Nyberg T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5184-5187. PubMed ID: 31947026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multichannel activity propagation across an engineered axon network.
    Chen HI; Wolf JA; Smith DH
    J Neural Eng; 2017 Apr; 14(2):026016. PubMed ID: 28140365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automated method for precise axon reconstruction from recordings of high-density micro-electrode arrays.
    Buccino AP; Yuan X; Emmenegger V; Xue X; Gänswein T; Hierlemann A
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35234667
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization of Axonal Spikes in Cultured Neuronal Networks Using Microelectrode Arrays and Microchannel Devices.
    Hong N; Joo S; Nam Y
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):492-498. PubMed ID: 27187941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multielectrode array microchannel platform reveals both transient and slow changes in axonal conduction velocity.
    Habibey R; Latifi S; Mousavi H; Pesce M; Arab-Tehrany E; Blau A
    Sci Rep; 2017 Aug; 7(1):8558. PubMed ID: 28819130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular detection of neuronal coupling.
    Guzman E; Cheng Z; Hansma PK; Tovar KR; Petzold LR; Kosik KS
    Sci Rep; 2021 Jul; 11(1):14733. PubMed ID: 34282275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording.
    Breckenridge LJ; Wilson RJ; Connolly P; Curtis AS; Dow JA; Blackshaw SE; Wilkinson CD
    J Neurosci Res; 1995 Oct; 42(2):266-76. PubMed ID: 8568928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer 2/3 Pyramidal Neurons of the Mouse Granular Retrosplenial Cortex and Their Innervation by Cortico-Cortical Axons.
    Robles RM; Domínguez-Sala E; Martínez S; Geijo-Barrientos E
    Front Neural Circuits; 2020; 14():576504. PubMed ID: 33224026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thresholds for activation of rabbit retinal ganglion cells with an ultrafine, extracellular microelectrode.
    Jensen RJ; Rizzo JF; Ziv OR; Grumet A; Wyatt J
    Invest Ophthalmol Vis Sci; 2003 Aug; 44(8):3533-43. PubMed ID: 12882804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons.
    Bec JM; Albert ES; Marc I; Desmadryl G; Travo C; Muller A; Chabbert C; Bardin F; Dumas M
    Lasers Surg Med; 2012 Nov; 44(9):736-45. PubMed ID: 23018648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials.
    Radivojevic M; Jäckel D; Altermatt M; Müller J; Viswam V; Hierlemann A; Bakkum DJ
    Sci Rep; 2016 Aug; 6():31332. PubMed ID: 27510732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic electrode array chip for electrical stimulation-mediated axonal regeneration.
    Kim JW; Choi YY; Park SH; Ha JH; Lee HU; Kang T; Sun W; Chung BG
    Lab Chip; 2022 May; 22(11):2122-2130. PubMed ID: 35388823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Action potential propagation recorded from single axonal arbors using multielectrode arrays.
    Tovar KR; Bridges DC; Wu B; Randall C; Audouard M; Jang J; Hansma PK; Kosik KS
    J Neurophysiol; 2018 Jul; 120(1):306-320. PubMed ID: 29641308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the excitability of neocortical efferent neurons to direct activation by extracellular current pulses.
    Swadlow HA
    J Neurophysiol; 1992 Aug; 68(2):605-19. PubMed ID: 1527578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recording axonal conduction to evaluate the integration of pluripotent cell-derived neurons into a neuronal network.
    Shimba K; Sakai K; Takayama Y; Kotani K; Jimbo Y
    Biomed Microdevices; 2015 Oct; 17(5):94. PubMed ID: 26303583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examination of axonal injury and regeneration in micropatterned neuronal culture using pulsed laser microbeam dissection.
    Hellman AN; Vahidi B; Kim HJ; Mismar W; Steward O; Jeon NL; Venugopalan V
    Lab Chip; 2010 Aug; 10(16):2083-92. PubMed ID: 20532390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.