These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy. Minárik P; Jablonská E; Král R; Lipov J; Ruml T; Blawert C; Hadzima B; Chmelík F Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():736-742. PubMed ID: 28183668 [TBL] [Abstract][Full Text] [Related]
3. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing. Ratna Sunil B; Sampath Kumar TS; Chakkingal U; Nandakumar V; Doble M; Devi Prasad V; Raghunath M Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():356-367. PubMed ID: 26652384 [TBL] [Abstract][Full Text] [Related]
4. Towards refining microstructures of biodegradable magnesium alloy WE43 by spark plasma sintering. Soderlind J; Cihova M; Schäublin R; Risbud S; Löffler JF Acta Biomater; 2019 Oct; 98():67-80. PubMed ID: 31254685 [TBL] [Abstract][Full Text] [Related]
5. In vivo characterization of magnesium alloy biodegradation using electrochemical H Zhao D; Wang T; Nahan K; Guo X; Zhang Z; Dong Z; Chen S; Chou DT; Hong D; Kumta PN; Heineman WR Acta Biomater; 2017 Mar; 50():556-565. PubMed ID: 28069511 [TBL] [Abstract][Full Text] [Related]
6. Mg-Zn-Y alloys with long-period stacking ordered structure: in vitro assessments of biodegradation behavior. Zhao X; Shi LL; Xu J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3627-37. PubMed ID: 23910258 [TBL] [Abstract][Full Text] [Related]
7. Microstructure, mechanical properties, and degradation of Mg-Ag alloy after equal-channel angular pressing. Bryła K; Horky J; Krystian M; Lityńska-Dobrzyńska L; Mingler B Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110543. PubMed ID: 32228913 [TBL] [Abstract][Full Text] [Related]
8. Preparation of medical Mg-Zn alloys and the effect of different zinc contents on the alloy. Hu Y; Guo X; Qiao Y; Wang X; Lin Q J Mater Sci Mater Med; 2022 Jan; 33(1):9. PubMed ID: 34982233 [TBL] [Abstract][Full Text] [Related]
9. Effectivity of fluoride treatment on hydrogen and corrosion product generation in temporal implants for different magnesium alloys. Trinidad J; Arruebarrena G; Marco I; Hurtado I; Sáenz de Argandoña E Proc Inst Mech Eng H; 2013 Dec; 227(12):1301-11. PubMed ID: 24048076 [TBL] [Abstract][Full Text] [Related]
10. In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy. Gong H; Wang K; Strich R; Zhou JG J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1632-40. PubMed ID: 25581552 [TBL] [Abstract][Full Text] [Related]
11. In vitro calibration and in vivo validation of phenomenological corrosion models for resorbable magnesium-based orthopaedic implants. Joshi A; Haththotuwa N; Richard JS; Laven R; Dias GJ; Staiger MP Acta Biomater; 2024 May; 180():171-182. PubMed ID: 38570108 [TBL] [Abstract][Full Text] [Related]
12. "Effect of Zn content and aging temperature on the in-vitro properties of heat-treated and Ca/P ceramic-coated Mg-0.5%Ca-x%Zn alloys". Ibrahim H; Luo A; Dean D; Elahinia M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109700. PubMed ID: 31349526 [TBL] [Abstract][Full Text] [Related]
13. In vitro biodegradation behavior of magnesium and magnesium alloy. Wang H; Shi Z J Biomed Mater Res B Appl Biomater; 2011 Aug; 98(2):203-9. PubMed ID: 21732527 [TBL] [Abstract][Full Text] [Related]
14. Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation. Jang Y; Tan Z; Jurey C; Xu Z; Dong Z; Collins B; Yun Y; Sankar J Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():28-40. PubMed ID: 25579893 [TBL] [Abstract][Full Text] [Related]
15. Study of Hydroxyapatite-coated High-strength Biodegradable Magnesium-based Alloy in Repairing Fracture Damage in Rats. Ma D; Zhang K; Dong B; She J; Zhang Y In Vivo; 2023; 37(1):190-203. PubMed ID: 36593054 [TBL] [Abstract][Full Text] [Related]
16. Cytotoxicity of biodegradable magnesium alloy WE43 to tumor cells in vitro: Bioresorbable implants with antitumor activity? Anisimova N; Kiselevskiy M; Martynenko N; Straumal B; Willumeit-Römer R; Dobatkin S; Estrin Y J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):167-173. PubMed ID: 30957969 [TBL] [Abstract][Full Text] [Related]
17. Bone cells influence the degradation interface of pure Mg and WE43 materials: Insights from multimodal in vitro analysis. Martinez DC; Borkam-Schuster A; Helmholz H; Dobkowska A; Luthringer-Feyerabend B; Płociński T; Willumeit-Römer R; Święszkowski W Acta Biomater; 2024 Oct; 187():471-490. PubMed ID: 39168423 [TBL] [Abstract][Full Text] [Related]
18. Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications. Mostaed E; Vedani M; Hashempour M; Bestetti M Biomatter; 2014; 4():e28283. PubMed ID: 25482411 [TBL] [Abstract][Full Text] [Related]
19. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications. Choudhary L; Singh Raman RK; Hofstetter J; Uggowitzer PJ Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():629-36. PubMed ID: 25063163 [TBL] [Abstract][Full Text] [Related]
20. Albumin Protein Impact on Early-Stage Imani A; Rahimi E; Lekka M; Andreatta F; Magnan M; Gonzalez-Garcia Y; Mol A; Raman RKS; Fedrizzi L; Asselin E ACS Appl Mater Interfaces; 2024 Jan; 16(1):1659-1674. PubMed ID: 38108601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]