BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34796224)

  • 41. Thoracolumbar hydrated nucleus pulposus extrusion and intervertebral disc extrusion in dogs: comparison of clinical presentation and magnetic resonance imaging findings.
    Alcoverro E; Schofield I; Spinillo S; Tauro A; Ruggeri M; Lowrie M; Gomes SA
    Vet J; 2024 Jun; ():106178. PubMed ID: 38906413
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prognostic relevance of the postoperative evolution of intramedullary spinal cord changes in signal intensity on magnetic resonance imaging after anterior decompression for cervical spondylotic myelopathy.
    Mastronardi L; Elsawaf A; Roperto R; Bozzao A; Caroli M; Ferrante M; Ferrante L
    J Neurosurg Spine; 2007 Dec; 7(6):615-22. PubMed ID: 18074686
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Deep Learning-based Model for Detecting Abnormalities on Brain MR Images for Triaging: Preliminary Results from a Multisite Experience.
    Gauriau R; Bizzo BC; Kitamura FC; Landi Junior O; Ferraciolli SF; Macruz FBC; Sanchez TA; Garcia MRT; Vedolin LM; Domingues RC; Gasparetto EL; Andriole KP
    Radiol Artif Intell; 2021 Jul; 3(4):e200184. PubMed ID: 34350408
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reliability of T2-weighted sagittal magnetic resonance images for determining the location of compressive disk herniation in dogs.
    Guillem Gallach R; Suran J; Cáceres AV; Reetz JA; Brown DC; Mai W
    Vet Radiol Ultrasound; 2011; 52(5):479-86. PubMed ID: 21689199
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task.
    Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Fröhling S; Utikal JS; von Kalle C;
    Eur J Cancer; 2019 Apr; 111():148-154. PubMed ID: 30852421
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Magnetic resonance imaging of diseased cervical and lumbar intervertebral discs].
    Kadoya S; Nakamura T; Takarada A; Yamamoto I; Sato S
    Neurol Med Chir (Tokyo); 1989 Feb; 29(2):99-105. PubMed ID: 2475812
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Magnetic resonance imaging features of cervical stenotic myelopathy in 21 dogs.
    Lipsitz D; Levitski RE; Chauvet AE; Berry WL
    Vet Radiol Ultrasound; 2001; 42(1):20-7. PubMed ID: 11245233
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnetic resonance image findings in pug dogs with thoracolumbar myelopathy and concurrent caudal articular process dysplasia.
    Driver CJ; Rose J; Tauro A; Fernandes R; Rusbridge C
    BMC Vet Res; 2019 May; 15(1):182. PubMed ID: 31151444
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Clinical and magnetic resonance imaging features of canine compressive cervical myelopathy with suspected hydrated nucleus pulposus extrusion.
    Beltran E; Dennis R; Doyle V; de Stefani A; Holloway A; de Risio L
    J Small Anim Pract; 2012 Feb; 53(2):101-7. PubMed ID: 22250580
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.
    Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE
    Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deep Learning for Automatic Differential Diagnosis of Primary Central Nervous System Lymphoma and Glioblastoma: Multi-Parametric Magnetic Resonance Imaging Based Convolutional Neural Network Model.
    Xia W; Hu B; Li H; Shi W; Tang Y; Yu Y; Geng C; Wu Q; Yang L; Yu Z; Geng D; Li Y
    J Magn Reson Imaging; 2021 Sep; 54(3):880-887. PubMed ID: 33694250
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison between noncontrast computed tomography and magnetic resonance imaging for detection and characterization of thoracolumbar myelopathy caused by intervertebral disk herniation in dogs.
    Cooper JJ; Young BD; Griffin JF; Fosgate GT; Levine JM
    Vet Radiol Ultrasound; 2014; 55(2):182-9. PubMed ID: 24118546
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep learning with a convolutional neural network model to differentiate renal parenchymal tumors: a preliminary study.
    Zheng Y; Wang S; Chen Y; Du HQ
    Abdom Radiol (NY); 2021 Jul; 46(7):3260-3268. PubMed ID: 33656574
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D Compressed Convolutional Neural Network Differentiates Neuromyelitis Optical Spectrum Disorders From Multiple Sclerosis Using Automated White Matter Hyperintensities Segmentations.
    Wang Z; Yu Z; Wang Y; Zhang H; Luo Y; Shi L; Wang Y; Guo C
    Front Physiol; 2020; 11():612928. PubMed ID: 33424635
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A two-step automated quality assessment for liver MR images based on convolutional neural network.
    Wang Y; Song Y; Wang F; Sun J; Gao X; Han Z; Shi L; Shao G; Fan M; Yang G
    Eur J Radiol; 2020 Mar; 124():108822. PubMed ID: 31951895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.