BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34796224)

  • 61. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI.
    Hallinan JTPD; Zhu L; Yang K; Makmur A; Algazwi DAR; Thian YL; Lau S; Choo YS; Eide SE; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST
    Radiology; 2021 Jul; 300(1):130-138. PubMed ID: 33973835
    [TBL] [Abstract][Full Text] [Related]  

  • 62. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images.
    Eo T; Jun Y; Kim T; Jang J; Lee HJ; Hwang D
    Magn Reson Med; 2018 Nov; 80(5):2188-2201. PubMed ID: 29624729
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Magnetic resonance T2 image signal intensity ratio and clinical manifestation predict prognosis after surgical intervention for cervical spondylotic myelopathy.
    Zhang YZ; Shen Y; Wang LF; Ding WY; Xu JX; He J
    Spine (Phila Pa 1976); 2010 May; 35(10):E396-9. PubMed ID: 20393392
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks.
    Le MH; Chen J; Wang L; Wang Z; Liu W; Cheng KT; Yang X
    Phys Med Biol; 2017 Jul; 62(16):6497-6514. PubMed ID: 28582269
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Application of convolutional neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging].
    Xu JH; Zhou XM; Ma JL; Liu SS; Zhang MS; Zheng XF; Zhang XY; Liu GW; Zhang XX; Lu Y; Wang DS
    Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jun; 23(6):572-577. PubMed ID: 32521977
    [No Abstract]   [Full Text] [Related]  

  • 66. Detection of Degenerative Changes on MR Images of the Lumbar Spine with a Convolutional Neural Network: A Feasibility Study.
    Lehnen NC; Haase R; Faber J; Rüber T; Vatter H; Radbruch A; Schmeel FC
    Diagnostics (Basel); 2021 May; 11(5):. PubMed ID: 34069362
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Novel Deep Learning Algorithm for the Automatic Detection of High-Grade Gliomas on T2-Weighted Magnetic Resonance Images: A Preliminary Machine Learning Study.
    Atici MA; Sagiroglu S; Celtikci P; Ucar M; Borcek AO; Emmez H; Celtikci E
    Turk Neurosurg; 2020; 30(2):199-205. PubMed ID: 31608975
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Detection of spondylosis deformans in thoracolumbar and lumbar lateral X-ray images of dogs using a deep learning network.
    Park J; Cho H; Ji Y; Lee K; Yoon H
    Front Vet Sci; 2024; 11():1334438. PubMed ID: 38425836
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A Deep Convolutional Neural Network for Annotation of Magnetic Resonance Imaging Sequence Type.
    Ranjbar S; Singleton KW; Jackson PR; Rickertsen CR; Whitmire SA; Clark-Swanson KR; Mitchell JR; Swanson KR; Hu LS
    J Digit Imaging; 2020 Apr; 33(2):439-446. PubMed ID: 31654174
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Automatic spinal cord localization, robust to MRI contrasts using global curve optimization.
    Gros C; De Leener B; Dupont SM; Martin AR; Fehlings MG; Bakshi R; Tummala S; Auclair V; McLaren DG; Callot V; Cohen-Adad J; Sdika M
    Med Image Anal; 2018 Feb; 44():215-227. PubMed ID: 29288983
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Clinical, magnetic resonance imaging, surgical features and comparison of surgically treated intervertebral disc extrusion in French bulldogs.
    Albertini GM; Stabile F; Marsh O; Uriarte A
    Front Vet Sci; 2023; 10():1230280. PubMed ID: 37720470
    [TBL] [Abstract][Full Text] [Related]  

  • 72. AI-driven attenuation correction for brain PET/MRI: Clinical evaluation of a dementia cohort and importance of the training group size.
    Ladefoged CN; Hansen AE; Henriksen OM; Bruun FJ; Eikenes L; Øen SK; Karlberg A; Højgaard L; Law I; Andersen FL
    Neuroimage; 2020 Nov; 222():117221. PubMed ID: 32750498
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Differentiation of carcinosarcoma from endometrial carcinoma on magnetic resonance imaging using deep learning.
    Saida T; Mori K; Hoshiai S; Sakai M; Urushibara A; Ishiguro T; Satoh T; Nakajima T
    Pol J Radiol; 2022; 87():e521-e529. PubMed ID: 36250139
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Development of a deep convolutional neural network to predict grading of canine meningiomas from magnetic resonance images.
    Banzato T; Cherubini GB; Atzori M; Zotti A
    Vet J; 2018 May; 235():90-92. PubMed ID: 29704946
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images.
    Ferjaoui R; Cherni MA; Boujnah S; Kraiem NEH; Kraiem T
    Comput Methods Programs Biomed; 2021 Sep; 209():106320. PubMed ID: 34390938
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Total disc replacement using a tissue-engineered intervertebral disc in vivo: new animal model and initial results.
    Gebhard H; Bowles R; Dyke J; Saleh T; Doty S; Bonassar L; Härtl R
    Evid Based Spine Care J; 2010 Aug; 1(2):62-6. PubMed ID: 23637671
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Can the acute magnetic resonance imaging features reflect neurologic prognosis in patients with cervical spinal cord injury?
    Matsushita A; Maeda T; Mori E; Yuge I; Kawano O; Ueta T; Shiba K
    Spine J; 2017 Sep; 17(9):1319-1324. PubMed ID: 28501580
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
    Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Long-term surgical outcome and risk factors in patients with cervical myelopathy and a change in signal intensity of intramedullary spinal cord on Magnetic Resonance imaging.
    Yagi M; Ninomiya K; Kihara M; Horiuchi Y
    J Neurosurg Spine; 2010 Jan; 12(1):59-65. PubMed ID: 20043766
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A comparison of sagittal short T1 inversion recovery and T2-weighted FSE sequences for detection of multiple sclerosis spinal cord lesions.
    Nayak NB; Salah R; Huang JC; Hathout GM
    Acta Neurol Scand; 2014 Mar; 129(3):198-203. PubMed ID: 23980614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.