BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34796477)

  • 1. Isothermal titration calorimetric assessment of lignin conversion by laccases.
    A Islam ST; Zhang J; Tonin F; Hinderks R; Deurloo YN; Urlacher VB; Hagedoorn PL
    Biotechnol Bioeng; 2022 Feb; 119(2):493-503. PubMed ID: 34796477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laccase catalysed oxidation of syringic acid: calorimetric determination of kinetic parameters.
    Volkova N; Ibrahim V; Hatti-Kaul R
    Enzyme Microb Technol; 2012 Apr; 50(4-5):233-7. PubMed ID: 22418263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic depolymerization of industrial lignins by laccase-mediator systems in 1,4-dioxane/water.
    Dillies J; Vivien C; Chevalier M; Rulence A; Châtaigné G; Flahaut C; Senez V; Froidevaux R
    Biotechnol Appl Biochem; 2020 Sep; 67(5):774-782. PubMed ID: 31957059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2017 Nov; 106():88-96. PubMed ID: 28859815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization.
    Bourbonnais R; Paice MG; Reid ID; Lanthier P; Yaguchi M
    Appl Environ Microbiol; 1995 May; 61(5):1876-80. PubMed ID: 7646025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the reactions of two fungal laccases differing in their redox potential with lignin model compounds: products and their rate of formation.
    Lahtinen M; Kruus K; Heinonen P; Sipilä J
    J Agric Food Chem; 2009 Sep; 57(18):8357-65. PubMed ID: 19702333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of mediators on laccase catalyzed radical formation in lignin.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2018 Sep; 116():48-56. PubMed ID: 29887016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of manganic chelates by laccase from the lignin-degrading fungus Trametes (Coriolus) versicolor.
    Archibald F; Roy B
    Appl Environ Microbiol; 1992 May; 58(5):1496-9. PubMed ID: 1622216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates.
    Pamidipati S; Ahmed A
    Folia Microbiol (Praha); 2020 Apr; 65(2):431-437. PubMed ID: 31863277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative modeling and molecular docking analysis of white, brown and soft rot fungal laccases using lignin model compounds for understanding the structural and functional properties of laccases.
    Kameshwar AKS; Barber R; Qin W
    J Mol Graph Model; 2018 Jan; 79():15-26. PubMed ID: 29127854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor.
    Snajdr J; Baldrian P
    Folia Microbiol (Praha); 2007; 52(5):498-502. PubMed ID: 18298047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor.
    Elegir G; Bussini D; Antonsson S; Lindström ME; Zoia L
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):809-17. PubMed ID: 17955195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of Lignocellulosic Waste for Laccase Production by
    Yuliana T; Komara DZ; Saripudin GLU; Subroto E; Safitri R
    Pak J Biol Sci; 2021 Jan; 24(6):699-705. PubMed ID: 34486346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation.
    Awasthi M; Jaiswal N; Singh S; Pandey VP; Dwivedi UN
    J Biomol Struct Dyn; 2015 Sep; 33(9):1835-49. PubMed ID: 25301391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation.
    Sitarz AK; Mikkelsen JD; Højrup P; Meyer AS
    Enzyme Microb Technol; 2013 Dec; 53(6-7):378-85. PubMed ID: 24315640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production, purification and biochemical characterization of two laccase isoforms produced by Trametes versicolor grown on oak sawdust.
    Martínez-Morales F; Bertrand B; Pasión Nava AA; Tinoco R; Acosta-Urdapilleta L; Trejo-Hernández MR
    Biotechnol Lett; 2015 Feb; 37(2):391-6. PubMed ID: 25257594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural and recombinant fungal laccases for paper pulp bleaching.
    Sigoillot C; Record E; Belle V; Robert JL; Levasseur A; Punt PJ; van den Hondel CA; Fournel A; Sigoillot JC; Asther M
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):346-52. PubMed ID: 14600793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR Study on Laccase Polymerization of Kraft Lignin Using Different Enzymes Source.
    Ibarra D; García-Fuentevilla L; Domínguez G; Martín-Sampedro R; Hernández M; Arias ME; Santos JI; Eugenio ME
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterologous expression and structural characterization of two low pH laccases from a biopulping white-rot fungus Physisporinus rivulosus.
    Hildén K; Mäkelä MR; Lundell T; Kuuskeri J; Chernykh A; Golovleva L; Archer DB; Hatakka A
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1589-99. PubMed ID: 22526780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.