BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34796497)

  • 1. Wine astringency: more than just tannin-protein interactions.
    González-Muñoz B; Garrido-Vargas F; Pavez C; Osorio F; Chen J; Bordeu E; O'Brien JA; Brossard N
    J Sci Food Agric; 2022 Mar; 102(5):1771-1781. PubMed ID: 34796497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wine and grape tannin interactions with salivary proteins and their impact on astringency: a review of current research.
    McRae JM; Kennedy JA
    Molecules; 2011 Mar; 16(3):2348-64. PubMed ID: 21399572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Relationship between Red Wine Matrix, Tannin Activity, and Sensory Properties.
    Watrelot AA; Byrnes NK; Heymann H; Kennedy JA
    J Agric Food Chem; 2016 Nov; 64(47):9116-9123. PubMed ID: 27802589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological study of tannin and protein interactions based on model systems.
    Brossard N; Bordeu E; Ibáñez RA; Chen J; Osorio F
    J Texture Stud; 2020 Aug; 51(4):585-592. PubMed ID: 32110834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.
    Obreque-Slíer E; Peña-Neira A; López-Solís R
    J Agric Food Chem; 2010 Mar; 58(6):3729-35. PubMed ID: 20158256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating wine astringency profiles by characterizing tannin fractions in Cabernet Sauvignon wines and model wines.
    Zhao Q; Du G; Zhao P; Guo A; Cao X; Cheng C; Liu H; Wang F; Zhao Y; Liu Y; Wang X
    Food Chem; 2023 Jul; 414():135673. PubMed ID: 36821921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of a commercial tannin on the sensorial temporality of astringency.
    Medel-Marabolí M; Romero JL; Obreque-Slier E; Contreras A; Peña-Neira A
    Food Res Int; 2017 Dec; 102():341-347. PubMed ID: 29195957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of condensed tannins addition on the astringency of red wines.
    Soares S; Sousa A; Mateus N; de Freitas V
    Chem Senses; 2012 Feb; 37(2):191-8. PubMed ID: 22086902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabinogalactan proteins and polysaccharides compete directly with condensed tannins for saliva proteins influencing astringency perception of Cabernet Sauvignon wines.
    Kuhlman B; Aleixandre-Tudo JL; Moore JP; du Toit W
    Food Chem; 2024 Mar; 435():137625. PubMed ID: 37801763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouthfeel subqualities in wines: A current insight on sensory descriptors and physical-chemical markers.
    Paissoni MA; Motta G; Giacosa S; Rolle L; Gerbi V; Río Segade S
    Compr Rev Food Sci Food Saf; 2023 Jul; 22(4):3328-3365. PubMed ID: 37282812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models based on ultraviolet spectroscopy, polyphenols, oligosaccharides and polysaccharides for prediction of wine astringency.
    Boulet JC; Trarieux C; Souquet JM; Ducasse MA; Caillé S; Samson A; Williams P; Doco T; Cheynier V
    Food Chem; 2016 Jan; 190():357-363. PubMed ID: 26212982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing novel oenological tannins from 44 plants sources by assessing astringency and color in model wine.
    Cheng C; Liu P; Zhao P; Du G; Wang S; Liu H; Cao X; Zhao Q; Wang X
    J Sci Food Agric; 2023 Feb; 103(3):1499-1513. PubMed ID: 36189836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency.
    Rinaldi A; Gambuti A; Moio L
    Food Chem; 2012 Dec; 135(4):2498-504. PubMed ID: 22980834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach.
    Brandão E; Silva MS; García-Estévez I; Williams P; Mateus N; Doco T; de Freitas V; Soares S
    Carbohydr Polym; 2017 Dec; 177():77-85. PubMed ID: 28962798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of supplementation with three commercial inactive dry yeasts on the colour, phenolic compounds, polysaccharides and astringency of a model wine solution and red wine.
    González-Royo E; Esteruelas M; Kontoudakis N; Fort F; Canals JM; Zamora F
    J Sci Food Agric; 2017 Jan; 97(1):172-181. PubMed ID: 26970323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of grape and wine tannin interaction with polyproline: implications for red wine astringency.
    McRae JM; Falconer RJ; Kennedy JA
    J Agric Food Chem; 2010 Dec; 58(23):12510-8. PubMed ID: 21070019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency.
    Ma W; Waffo-Teguo P; Jourdes M; Li H; Teissedre PL
    PLoS One; 2016; 11(8):e0161095. PubMed ID: 27518822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red Wine Dryness Perception Related to Physicochemistry.
    Watrelot AA; Heymann H; Waterhouse AL
    J Agric Food Chem; 2020 Mar; 68(10):2964-2972. PubMed ID: 30983339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic characterization of wine astringency profiles using modified progressive profiling.
    Kang W; Niimi J; Muhlack RA; Smith PA; Bastian SEP
    Food Res Int; 2019 Jun; 120():244-254. PubMed ID: 31000236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Chemical Species on Polyphenol-Protein Interactions Related to Wine Astringency.
    Ramos-Pineda AM; Carpenter GH; García-Estévez I; Escribano-Bailón MT
    J Agric Food Chem; 2020 Mar; 68(10):2948-2954. PubMed ID: 30854856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.