BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 34796621)

  • 1. A Review on Electric and Fuel Cell Vehicle Anatomy, Technology Evolution and Policy Drivers towards EVs and FCEVs Market Propagation.
    Chandran M; Palanisamy K; Benson D; Sundaram S
    Chem Rec; 2022 Feb; 22(2):e202100235. PubMed ID: 34796621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuelling the sustainable future: a comparative analysis between battery electrical vehicles (BEV) and fuel cell electrical vehicles (FCEV).
    Parikh A; Shah M; Prajapati M
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):57236-57252. PubMed ID: 37010685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fuel cell-based electric vehicles technologies and challenges.
    Selmi T; Khadhraoui A; Cherif A
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):78121-78131. PubMed ID: 36173525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extensive review on hybrid electric vehicles powered by fuel cell-enabled hybrid energy storage system.
    Shekhawat M; Bansal HO
    Environ Sci Pollut Res Int; 2023 Dec; 30(57):119750-119771. PubMed ID: 37973779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.
    Elgowainy A; Han J; Ward J; Joseck F; Gohlke D; Lindauer A; Ramsden T; Biddy M; Alexander M; Barnhart S; Sutherland I; Verduzco L; Wallington TJ
    Environ Sci Technol; 2018 Feb; 52(4):2392-2399. PubMed ID: 29298387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The alternative path for fossil oil: Electric vehicles or hydrogen fuel cell vehicles?
    Zhang W; Fang X; Sun C
    J Environ Manage; 2023 Sep; 341():118019. PubMed ID: 37178543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to reduce the greenhouse gas emissions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel cell-electric and catenary trucks.
    Breuer JL; Samsun RC; Stolten D; Peters R
    Environ Int; 2021 Jul; 152():106474. PubMed ID: 33711760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.
    Luk JM; Kim HC; De Kleine R; Wallington TJ; MacLean HL
    Environ Sci Technol; 2017 Aug; 51(15):8215-8228. PubMed ID: 28714678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addressing the range anxiety of battery electric vehicles with charging en route.
    Chakraborty P; Parker R; Hoque T; Cruz J; Du L; Wang S; Bhunia S
    Sci Rep; 2022 Apr; 12(1):5588. PubMed ID: 35379831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives.
    Delucchi MA; Yang C; Burke AF; Ogden JM; Kurani K; Kessler J; Sperling D
    Philos Trans A Math Phys Eng Sci; 2014 Jan; 372(2006):20120325. PubMed ID: 24298079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing total cost of driving competitiveness of zero-emission trucks.
    Ledna C; Muratori M; Yip A; Jadun P; Hoehne C; Podkaminer K
    iScience; 2024 Apr; 27(4):109385. PubMed ID: 38510126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why is the world not yet ready to use alternative fuel vehicles?
    Ghadikolaei MA; Wong PK; Cheung CS; Zhao J; Ning Z; Yung KF; Wong HC; Gali NK
    Heliyon; 2021 Jul; 7(7):e07527. PubMed ID: 34337177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The efficient operating parameter estimation for a simulated plug-in hybrid electric vehicle.
    Singh KV; Khandelwal R; Bansal HO; Singh D
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):18126-18141. PubMed ID: 34676482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment of electric vehicles: a systematic review of literature.
    Das PK; Bhat MY; Sajith S
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):73-89. PubMed ID: 38038907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target.
    Zhu Y; Skerlos S; Xu M; Cooper DR
    Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China's Passenger Vehicle Fuel Consumption Regulations.
    Chen K; Zhao F; Liu X; Hao H; Liu Z
    Int J Environ Res Public Health; 2021 Mar; 18(6):. PubMed ID: 33808799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading.
    Liao W; Liu L; Fu J
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31461949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Personal Vehicles Evaluated against Climate Change Mitigation Targets.
    Miotti M; Supran GJ; Kim EJ; Trancik JE
    Environ Sci Technol; 2016 Oct; 50(20):10795-10804. PubMed ID: 27676468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective.
    Gan Y; Lu Z; He X; Hao C; Wang Y; Cai H; Wang M; Elgowainy A; Przesmitzki S; Bouchard J
    Environ Sci Technol; 2021 May; 55(10):6944-6956. PubMed ID: 33945267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.