BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34797085)

  • 1. Oriented Assembly of 2D Metal-Pyridylporphyrinic Framework Films for Giant Nonlinear Optical Limiting.
    Li DJ; Li QH; Gu ZG; Zhang J
    Nano Lett; 2021 Dec; 21(23):10012-10018. PubMed ID: 34797085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpenetrated Metal-Porphyrinic Framework for Enhanced Nonlinear Optical Limiting.
    Li DJ; Li QH; Wang ZR; Ma ZZ; Gu ZG; Zhang J
    J Am Chem Soc; 2021 Oct; 143(41):17162-17169. PubMed ID: 34543015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing Photodetectors in Two-Dimensional Metal-Metalloporphyrinic Framework Thin Films.
    Li DJ; Tian YB; Lin Q; Zhang J; Gu ZG
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35770297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Two-Dimensional Homo-Bimetallic Porphyrin Framework Thin Films for Optimizing Nonlinear Optical Limiting.
    Pu DF; Chen QY; Zheng X; Li DJ
    Inorg Chem; 2024 Jan; 63(1):909-914. PubMed ID: 38123359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination-Induced Symmetry Breaking on Metal-Porphyrinic Framework Thin Films for Enhanced Nonlinear Optical Limiting.
    Tian YB; Li QH; Wang Z; Gu ZG; Zhang J
    Nano Lett; 2023 Apr; 23(7):3062-3069. PubMed ID: 36995141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically regulating nonlinear optical limiting of metal-organic framework film.
    Ma ZZ; Li QH; Wang Z; Gu ZG; Zhang J
    Nat Commun; 2022 Oct; 13(1):6347. PubMed ID: 36289248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auto-controlled fabrication of a metal-porphyrin framework thin film with tunable optical limiting effects.
    Li DJ; Gu ZG; Zhang J
    Chem Sci; 2020 Jan; 11(7):1935-1942. PubMed ID: 34123287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of optical limiting in metalloporphyrins under visible continuous radiation.
    Zhang Q; Lu B; Liu S; Lü X; Cheng X
    Phys Chem Chem Phys; 2023 Oct; 25(41):28213-28219. PubMed ID: 37823230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porphyrin metal-organic frameworks with bilayer and pillar-layered frameworks and third-order nonlinear optical properties.
    Zhu Z; Wang Z; Li QH; Ma Z; Wang F; Zhang J
    Dalton Trans; 2023 Apr; 52(14):4309-4314. PubMed ID: 36951491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media.
    Younis SA; Lim DK; Kim KH; Deep A
    Adv Colloid Interface Sci; 2020 Mar; 277():102108. PubMed ID: 32028075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metalloporphyrin Metal-Organic Frameworks: Eminent Synthetic Strategies and Recent Practical Exploitations.
    Ebrahimi A; Krivosudský L
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant and Multistage Nonlinear Optical Response in Porphyrin-Based Surface-Supported Metal-Organic Framework Nanofilms.
    Gu C; Zhang H; You P; Zhang Q; Luo G; Shen Q; Wang Z; Hu J
    Nano Lett; 2019 Dec; 19(12):9095-9101. PubMed ID: 31765163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced third-order nonlinear optical properties determined in thin films using the Z-scan technique: bis(μ-4,4'-oxydibenzoato)bis[(4'-phenyl-2,2':6',2''-terpyridine)cobalt(II)].
    Liu R; Zhao N; Liu P; An C; Lian Z
    Acta Crystallogr C Struct Chem; 2016 May; 72(Pt 5):451-5. PubMed ID: 27146576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous metal-organic frameworks for heterogeneous biomimetic catalysis.
    Zhao M; Ou S; Wu CD
    Acc Chem Res; 2014 Apr; 47(4):1199-207. PubMed ID: 24499017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear Optical Switching in Regioregular Porphyrin Covalent Organic Frameworks.
    Biswal BP; Valligatla S; Wang M; Banerjee T; Saad NA; Mariserla BMK; Chandrasekhar N; Becker D; Addicoat M; Senkovska I; Berger R; Rao DN; Kaskel S; Feng X
    Angew Chem Int Ed Engl; 2019 May; 58(21):6896-6900. PubMed ID: 30864202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring transition metal complexes for nonlinear optics applications. 2. A theoretical investigation of the second-order nonlinear optical properties of M(CO)(5)L complexes (M = Cr, W; L = Py, PyCHO, Pyz, PyzBF(3), BPE, BPEBF(3)).
    Bruschi M; Fantucci P; Pizzotti M
    J Phys Chem A; 2005 Oct; 109(42):9637-45. PubMed ID: 16866417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetrazine chromophore-based metal-organic frameworks with unusual configurations: synthetic, structural, theoretical, fluorescent, and nonlinear optical studies.
    Li J; Jia D; Meng S; Zhang J; Cifuentes MP; Humphrey MG; Zhang C
    Chemistry; 2015 May; 21(21):7914-26. PubMed ID: 25877804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metalloporphyrin-Based Metal-Organic Frameworks for the Ultrasensitive Chemiresistive Detection of NO
    Zhang Y; Liu Q; Sun Q; Li H; Shen J; Liu H; Chen W; Zhang Y; Chen Y
    ACS Sens; 2023 Nov; 8(11):4353-4363. PubMed ID: 37899610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-switchable second-order nonlinear optical responses of push-pull monotetrathiafulvalene-metalloporphyrins.
    Liu CG; Guan W; Song P; Yan LK; Su ZM
    Inorg Chem; 2009 Jul; 48(14):6548-54. PubMed ID: 19522472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical exploration to second-order nonlinear optical properties of new hybrid complexes via coordination interaction between (metallo)porphyrin and [MSiW11O39](3-) (M=Nb(V) or V(V)) polyoxometalates.
    Zhang T; Ma N; Yan L; Wen S; Ma T; Su Z
    J Mol Graph Model; 2013 Nov; 46():59-64. PubMed ID: 24149319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.