These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 34797418)
1. Projected changes in East African climate and its impacts on climatic suitability of maize production areas by the mid-twenty-first century. Ojara MA; Yunsheng L; Ongoma V; Mumo L; Akodi D; Ayugi B; Ogwang BA Environ Monit Assess; 2021 Nov; 193(12):831. PubMed ID: 34797418 [TBL] [Abstract][Full Text] [Related]
2. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya. Gummadi S; Kadiyala MDM; Rao KPC; Athanasiadis I; Mulwa R; Kilavi M; Legesse G; Amede T PLoS One; 2020; 15(11):e0241147. PubMed ID: 33151967 [TBL] [Abstract][Full Text] [Related]
3. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios. Zhang Y; Wang Y; Niu H Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428 [TBL] [Abstract][Full Text] [Related]
4. Impacts of climate change on agro-climatic suitability of major food crops in Ghana. Chemura A; Schauberger B; Gornott C PLoS One; 2020; 15(6):e0229881. PubMed ID: 32598391 [TBL] [Abstract][Full Text] [Related]
5. Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches. Estes LD; Beukes H; Bradley BA; Debats SR; Oppenheimer M; Ruane AC; Schulze R; Tadross M Glob Chang Biol; 2013 Dec; 19(12):3762-74. PubMed ID: 23864352 [TBL] [Abstract][Full Text] [Related]
6. Investigating the potential impact of 1.5, 2 and 3 °C global warming levels on crop suitability and planting season over West Africa. Egbebiyi TS; Crespo O; Lennard C; Zaroug M; Nikulin G; Harris I; Price J; Forstenhäusler N; Warren R PeerJ; 2020; 8():e8851. PubMed ID: 32411508 [TBL] [Abstract][Full Text] [Related]
7. Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria. Tofa AI; Kamara AY; Babaji BA; Akinseye FM; Bebeley JF Sci Rep; 2021 Apr; 11(1):8983. PubMed ID: 33903650 [TBL] [Abstract][Full Text] [Related]
8. Using crop modeling to evaluate the impacts of climate change on wheat in southeastern turkey. Vanli Ö; Ustundag BB; Ahmad I; Hernandez-Ochoa IM; Hoogenboom G Environ Sci Pollut Res Int; 2019 Oct; 26(28):29397-29408. PubMed ID: 31401801 [TBL] [Abstract][Full Text] [Related]
9. Assessing climate change projections and impacts on Central Malawi's maize yield: The risk of maladaptation. Warnatzsch EA; Reay DS Sci Total Environ; 2020 Apr; 711():134845. PubMed ID: 32000327 [TBL] [Abstract][Full Text] [Related]
10. [Climatic suitability of spring maize planted in the "sickle bend" area of China and regulation suggestion]. Mao LX; Zhao JF; Xu LL; Yan H; Li S; Li YF Ying Yong Sheng Tai Xue Bao; 2016 Dec; 27(12):3935-3943. PubMed ID: 29704353 [TBL] [Abstract][Full Text] [Related]
11. Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China. Qiao J; Yu D; Liu Y Environ Monit Assess; 2017 Oct; 189(11):532. PubMed ID: 28967045 [TBL] [Abstract][Full Text] [Related]
12. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO Jin Z; Zhuang Q; Wang J; Archontoulis SV; Zobel Z; Kotamarthi VR Glob Chang Biol; 2017 Jul; 23(7):2687-2704. PubMed ID: 28063186 [TBL] [Abstract][Full Text] [Related]
13. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change. Fereidoon M; Koch M Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443 [TBL] [Abstract][Full Text] [Related]
14. Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe. Elsgaard L; Børgesen CD; Olesen JE; Siebert S; Ewert F; Peltonen-Sainio P; Rötter RP; Skjelvåg AO Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1514-26. PubMed ID: 22827234 [TBL] [Abstract][Full Text] [Related]
15. Agro-climatic sensitivity analysis for sustainable crop diversification; the case of Proso millet (Panicum miliaceum L.). Wimalasiri EM; Ashfold MJ; Jahanshiri E; Walker S; Azam-Ali SN; Karunaratne AS PLoS One; 2023; 18(3):e0283298. PubMed ID: 36952502 [TBL] [Abstract][Full Text] [Related]
16. Impact of climate change on crop yield and role of model for achieving food security. Kumar M Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072 [TBL] [Abstract][Full Text] [Related]
17. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis. Rettie FM; Gayler S; K D Weber T; Tesfaye K; Streck T PLoS One; 2022; 17(1):e0262951. PubMed ID: 35061854 [TBL] [Abstract][Full Text] [Related]
18. Climate-associated major food crops production change under multi-scenario in China. Liu Y; Zhang J; Pan T; Chen Q; Qin Y; Ge Q Sci Total Environ; 2022 Mar; 811():151393. PubMed ID: 34748850 [TBL] [Abstract][Full Text] [Related]
19. Spatiotemporal variation of irrigation water requirements for grain crops under climate change in Northwest China. Zhang J; Deng M; Han Y; Huang H; Yang T Environ Sci Pollut Res Int; 2023 Apr; 30(16):45711-45724. PubMed ID: 36708471 [TBL] [Abstract][Full Text] [Related]
20. Future climate impacts on maize farming and food security in Malawi. Stevens T; Madani K Sci Rep; 2016 Nov; 6():36241. PubMed ID: 27824092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]