These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34797540)

  • 1. Microalgae cultivation in wastewater from agricultural industries to benefit next generation of bioremediation: a bibliometric analysis.
    Melo JM; Ribeiro MR; Telles TS; Amaral HF; Andrade DS
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):22708-22720. PubMed ID: 34797540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO
    Lu W; Asraful Alam M; Liu S; Xu J; Parra Saldivar R
    Sci Total Environ; 2020 May; 716():135247. PubMed ID: 31839294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: a circular bioeconomy approach.
    Ummalyma SB; Sahoo D; Pandey A
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):58837-58856. PubMed ID: 33527238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sustainable mixotrophic microalgae cultivation from dairy wastes for carbon credit, bioremediation and lucrative biofuels.
    Patel AK; Joun J; Sim SJ
    Bioresour Technol; 2020 Oct; 313():123681. PubMed ID: 32562971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced sustainable integration of CO
    Chen J; Dai L; Mataya D; Cobb K; Chen P; Ruan R
    Bioresour Technol; 2022 Dec; 366():128188. PubMed ID: 36309175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.
    McGinn PJ; Dickinson KE; Bhatti S; Frigon JC; Guiot SR; O'Leary SJ
    Photosynth Res; 2011 Sep; 109(1-3):231-47. PubMed ID: 21461850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential use of algae for the bioremediation of different types of wastewater and contaminants: Production of bioproducts and biofuel for green circular economy.
    Alazaiza MYD; Albahnasawi A; Ahmad Z; Bashir MJK; Al-Wahaibi T; Abujazar MSS; Abu Amr SS; Nassani DE
    J Environ Manage; 2022 Dec; 324():116415. PubMed ID: 36206653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofuel recovery from microalgae biomass grown in dairy wastewater treated with activated sludge: The next step in sustainable production.
    de Mendonça HV; Otenio MH; Marchão L; Lomeu A; de Souza DS; Reis A
    Sci Total Environ; 2022 Jun; 824():153838. PubMed ID: 35176365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A state of the art review on the co-cultivation of microalgae-fungi in wastewater for biofuel production.
    Satpati GG; Dikshit PK; Mal N; Pal R; Sherpa KC; Rajak RC; Rather SU; Raghunathan S; Davoodbasha M
    Sci Total Environ; 2023 Apr; 870():161828. PubMed ID: 36707000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: A review of membrane-integrated green approach.
    Kumar R; Ghosh AK; Pal P
    Sci Total Environ; 2020 Jan; 698():134169. PubMed ID: 31505365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: An updated review.
    Li S; Li X; Ho SH
    Chemosphere; 2022 Mar; 291(Pt 1):132863. PubMed ID: 34774903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biorefinery integration of microalgae production into cassava processing industry: Potential and perspectives.
    de Carvalho JC; Borghetti IA; Cartas LC; Woiciechowski AL; Soccol VT; Soccol CR
    Bioresour Technol; 2018 Jan; 247():1165-1172. PubMed ID: 29055530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microalgae cultivation for phenolic compounds removal.
    Surkatti R; Al-Zuhair S
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33936-33956. PubMed ID: 30353440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress on microalgae cultivation in wastewater for bioremediation and circular bioeconomy.
    Satya ADM; Cheah WY; Yazdi SK; Cheng YS; Khoo KS; Vo DN; Bui XD; Vithanage M; Show PL
    Environ Res; 2023 Feb; 218():114948. PubMed ID: 36455634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective.
    Renuka N; Ratha SK; Kader F; Rawat I; Bux F
    J Environ Manage; 2021 Nov; 297():113257. PubMed ID: 34303940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: a review.
    Ummalyma SB; Sirohi R; Udayan A; Yadav P; Raj A; Sim SJ; Pandey A
    Phytochem Rev; 2022 Apr; ():1-23. PubMed ID: 35431709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Advances in biological wastewater treatment technology of microalgae.].
    Pan Y; Wang HS; Liu ZW; Yan H
    Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2490-2500. PubMed ID: 31418252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery.
    Olguín EJ
    Biotechnol Adv; 2012; 30(5):1031-46. PubMed ID: 22609182
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Oliveira AC; Barata A; Batista AP; Gouveia L
    Environ Technol; 2019 Dec; 40(28):3735-3744. PubMed ID: 29893195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.