BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34799169)

  • 21. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass.
    Wang S; Gao B; Zimmerman AR; Li Y; Ma L; Harris WG; Migliaccio KW
    Chemosphere; 2015 Sep; 134():257-62. PubMed ID: 25957037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of persulfate by nanoscale zero-valent iron loaded porous graphitized biochar for the removal of 17β-estradiol: Synthesis, performance and mechanism.
    Ding J; Xu W; Liu S; Liu Y; Tan X; Li X; Li Z; Zhang P; Du L; Li M
    J Colloid Interface Sci; 2021 Apr; 588():776-786. PubMed ID: 33309141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Release of soluble elements from biochars derived from various biomass feedstocks.
    Wu H; Che X; Ding Z; Hu X; Creamer AE; Chen H; Gao B
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1905-15. PubMed ID: 26408115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic co-pyrolysis of herb residue and polypropylene for pyrolysis products upgrading and diversification using nickel-X/biochar and ZSM-5 (X = iron, cobalt, copper).
    Luo W; Wang T; Zhang S; Zhang D; Dong H; Song M; Zhou Z
    Bioresour Technol; 2022 Apr; 349():126845. PubMed ID: 35158035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suitability of marginal biomass-derived biochars for soil amendment.
    Buss W; Graham MC; Shepherd JG; Mašek O
    Sci Total Environ; 2016 Mar; 547():314-322. PubMed ID: 26789369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials.
    Zhao Y; Qamar SA; Qamar M; Bilal M; Iqbal HMN
    J Environ Manage; 2021 Dec; 300():113762. PubMed ID: 34543967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification.
    Guo F; Jia X; Liang S; Zhou N; Chen P; Ruan R
    Bioresour Technol; 2020 Feb; 298():122263. PubMed ID: 31685358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds.
    Liu T; Yao B; Luo Z; Li W; Li C; Ye Z; Gong X; Yang J; Zhou Y
    Sci Total Environ; 2022 Aug; 836():155421. PubMed ID: 35472360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy.
    Li W; Dang Q; Brown RC; Laird D; Wright MM
    Bioresour Technol; 2017 Oct; 241():959-968. PubMed ID: 28637163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application.
    Pariyar P; Kumari K; Jain MK; Jadhao PS
    Sci Total Environ; 2020 Apr; 713():136433. PubMed ID: 31954240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the dependence of biochar properties on different types of biomass.
    Gholizadeh M; Meca S; Zhang S; Clarens F; Hu X
    Waste Manag; 2024 Jun; 182():142-163. PubMed ID: 38653043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of biochars obtained from valorization of biowaste and evaluation of its physicochemical properties.
    Narzari R; Bordoloi N; Sarma B; Gogoi L; Gogoi N; Borkotoki B; Kataki R
    Bioresour Technol; 2017 Oct; 242():324-328. PubMed ID: 28501382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates.
    Li Y; Yu H; Liu L; Yu H
    J Hazard Mater; 2021 Oct; 420():126655. PubMed ID: 34329082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic pyrolysis of tire waste: Impacts of biochar catalyst on product evolution.
    Chao L; Zhang C; Zhang L; Gholizadeh M; Hu X
    Waste Manag; 2020 Oct; 116():9-21. PubMed ID: 32781409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process.
    Zhao Y; Yuan X; Li X; Jiang L; Wang H
    J Hazard Mater; 2021 May; 409():124893. PubMed ID: 33418291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modification on biochars for applications: A research update.
    Huang WH; Lee DJ; Huang C
    Bioresour Technol; 2021 Jan; 319():124100. PubMed ID: 32950819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent developments on algal biochar production and characterization.
    Yu KL; Lau BF; Show PL; Ong HC; Ling TC; Chen WH; Ng EP; Chang JS
    Bioresour Technol; 2017 Dec; 246():2-11. PubMed ID: 28844690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review.
    Pan X; Gu Z; Chen W; Li Q
    Sci Total Environ; 2021 Feb; 754():142104. PubMed ID: 33254921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochar efficiency in pesticides sorption as a function of production variables--a review.
    Yavari S; Malakahmad A; Sapari NB
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):13824-41. PubMed ID: 26250816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.