BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3479954)

  • 1. An in-vitro study of enamel protein degradation in developing bovine enamel.
    Menanteau J; Mitre D; Raher S
    Arch Oral Biol; 1986; 31(12):807-10. PubMed ID: 3479954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amelogenin post-translational modifications: carboxy-terminal processing and the phosphorylation of bovine and porcine "TRAP" and "LRAP" amelogenins.
    Fincham AG; Moradian-Oldak J
    Biochem Biophys Res Commun; 1993 Nov; 197(1):248-55. PubMed ID: 8250931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of dissociatively extracted fetal tooth matrix proteins. I. Principal molecular species in developing bovine enamel.
    Termine JD; Belcourt AB; Christner PJ; Conn KM; Nylen MU
    J Biol Chem; 1980 Oct; 255(20):9760-8. PubMed ID: 7430099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic-inorganic relationships, and immunohistochemical localization of amelogenins and enamelins in developing enamel.
    Hayashi Y; Bianco P; Shimokawa H; Termine JD; Bonucci E
    Basic Appl Histochem; 1986; 30(3):291-9. PubMed ID: 3790033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of hamster amelogenins during secretory stage enamel formation in organ culture.
    Bronckers AL; Bervoets TJ; Lyaruu DM; Wöltgens JH
    Matrix Biol; 1995 Jul; 14(7):533-41. PubMed ID: 8535603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunocytochemical localization of amelogenins in the deciduous tooth germs of the human fetus.
    Uchida T; Tanabe T; Fukae M
    Arch Histol Cytol; 1989 Dec; 52(5):543-52. PubMed ID: 2631923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An immunocytochemical study of amelogenin proteins in the developing tooth enamel of the gar-pike, Lepisosteus oculatus (Holostei, Actinopterygii).
    Ishiyama M; Inage T; Shimokawa H
    Arch Histol Cytol; 1999 May; 62(2):191-7. PubMed ID: 10399543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity of amelogenin mRNA in the bovine tooth germ.
    Shimokawa H; Sobel ME; Sasaki M; Termine JD; Young MF
    J Biol Chem; 1987 Mar; 262(9):4042-7. PubMed ID: 3549722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human amelogenins: sequences of "TRAP" molecules.
    Fincham AG; Hu YY; Pavlova Z; Slavkin HC; Snead ML
    Calcif Tissue Int; 1989 Oct; 45(4):243-50. PubMed ID: 2509010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enamelins in the newly formed bovine enamel.
    Fukae M; Tanabe T; Uchida T; Yamakoshi Y; Shimizu M
    Calcif Tissue Int; 1993 Oct; 53(4):257-61. PubMed ID: 8275354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of enamelins by proteinases found in porcine secretory enamel in vitro.
    Tanabe T; Fukae M; Shimizu M
    Arch Oral Biol; 1994 Apr; 39(4):277-81. PubMed ID: 8024491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunohistochemical and Western blot analyses of collar enamel in the jaw teeth of gars, Lepisosteus oculatus, an actinopterygian fish.
    Sasagawa I; Ishiyama M; Yokosuka H; Mikami M; Shimokawa H; Uchida T
    Connect Tissue Res; 2014 Jun; 55(3):225-33. PubMed ID: 24611716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic distribution of enamel proteins: immunohistochemical localization with monoclonal antibodies indicates the evolutionary appearance of enamelins prior to amelogenins.
    Herold R; Rosenbloom J; Granovsky M
    Calcif Tissue Int; 1989 Aug; 45(2):88-94. PubMed ID: 2505899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of stable high molecular-weight aggregates of amelogenins formed during porcine enamel development.
    Limeback H; Simic A
    Arch Oral Biol; 1990; 35(6):459-68. PubMed ID: 2372249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific cleavage of a recombinant murine amelogenin at the carboxy-terminal region by a proteinase fraction isolated from developing bovine tooth enamel.
    Moradian-Oldak J; Simmer JP; Sarte PE; Zeichner-David M; Fincham AG
    Arch Oral Biol; 1994 Aug; 39(8):647-56. PubMed ID: 7980113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunochemical and biochemical studies of human enamel proteins during neonatal development.
    Zeichner-David M; MacDougall M; Vides J; Snead ML; Slavkin HC; Turkel SB; Pavlova Z
    J Dent Res; 1987 Jan; 66(1):50-6. PubMed ID: 2442216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Changes in and the role of multiple phosphoproteins in the enamel during its maturation and mineralization].
    Petrovich IuA; Podorozhnaia RP; Gurin NA
    Stomatologiia (Mosk); 1985; 64(6):73-8. PubMed ID: 2417387
    [No Abstract]   [Full Text] [Related]  

  • 18. Controlled proteolysis of amelogenins reveals exposure of both carboxy- and amino-terminal regions.
    Moradian-Oldak J; Jimenez I; Maltby D; Fincham AG
    Biopolymers; 2001 Jun; 58(7):606-16. PubMed ID: 11285557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification, characterization, and biosynthesis of bovine enamelins.
    Ogata Y; Shimokawa H; Sasaki S
    Calcif Tissue Int; 1988 Dec; 43(6):389-99. PubMed ID: 3146429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteolytic activity of opossum tooth extracts.
    Ryu OH; Hu CC; Zhang C; Qian Q; Moradian-Oldak J; Fincham AG; Simmer JP
    Eur J Oral Sci; 1998 Jan; 106 Suppl 1():337-44. PubMed ID: 9541245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.