BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34799602)

  • 1. Modeling optical design parameters for fine stimulation in sciatic nerve of optogenetic mice.
    Fritz N; Gulick D; Bailly M; Blain Christen JM
    Sci Rep; 2021 Nov; 11(1):22588. PubMed ID: 34799602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact Optical Nerve Cuff Electrode for Simultaneous Neural Activity Monitoring and Optogenetic Stimulation of Peripheral Nerves.
    Song KI; Park SE; Lee S; Kim H; Lee SH; Youn I
    Sci Rep; 2018 Oct; 8(1):15630. PubMed ID: 30353118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Feedback Control and Electrical-Optical Costimulation of Peripheral Nerves.
    Kapur SK; Richner TJ; Brodnick SK; Williams JC; Poore SO
    Plast Reconstr Surg; 2016 Sep; 138(3):451e-460e. PubMed ID: 27556620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical and thermal simulations for the design of optodes for minimally invasive optogenetics stimulation or photomodulation of deep and large cortical areas in non-human primate brain.
    Dubois A; Chiang CC; Smekens F; Jan S; Cuplov V; Palfi S; Chuang KS; Senova S; Pain F
    J Neural Eng; 2018 Dec; 15(6):065004. PubMed ID: 30190446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation.
    Kim D; Yokota T; Suzuki T; Lee S; Woo T; Yukita W; Koizumi M; Tachibana Y; Yawo H; Onodera H; Sekino M; Someya T
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21138-21146. PubMed ID: 32817422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical inhibition of motor nerve and muscle activity in vivo.
    Liske H; Towne C; Anikeeva P; Zhao S; Feng G; Deisseroth K; Delp S
    Muscle Nerve; 2013 Jun; 47(6):916-21. PubMed ID: 23629741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical cuff for optogenetic control of the peripheral nervous system.
    Michoud F; Sottas L; Browne LE; Asboth L; Latremoliere A; Sakuma M; Courtine G; Woolf CJ; Lacour SP
    J Neural Eng; 2018 Feb; 15(1):015002. PubMed ID: 28978778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realistic Numerical and Analytical Modeling of Light Scattering in Brain Tissue for Optogenetic Applications(1,2,3).
    Yona G; Meitav N; Kahn I; Shoham S
    eNeuro; 2016; 3(1):. PubMed ID: 26866055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transdermal optogenetic peripheral nerve stimulation.
    Maimon BE; Zorzos AN; Bendell R; Harding A; Fahmi M; Srinivasan S; Calvaresi P; Herr HM
    J Neural Eng; 2017 Jun; 14(3):034002. PubMed ID: 28157088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined optogenetic and electrical stimulation of the sciatic nerve for selective control of sensory fibers.
    Matarazzo JV; Ajay EA; Payne SC; Trang EP; Thompson AC; Marroquin JB; Wise AK; Fallon JB; Richardson RT
    Front Neurosci; 2023; 17():1190662. PubMed ID: 37360169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical stimulation of neural tissue in vivo.
    Wells J; Kao C; Mariappan K; Albea J; Jansen ED; Konrad P; Mahadevan-Jansen A
    Opt Lett; 2005 Mar; 30(5):504-6. PubMed ID: 15789717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model study of combined electrical and near-infrared neural stimulation on the bullfrog sciatic nerve.
    You M; Mou Z
    Lasers Med Sci; 2017 Jul; 32(5):1163-1172. PubMed ID: 28478504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics.
    Pisanello F; Sileo L; Oldenburg IA; Pisanello M; Martiradonna L; Assad JA; Sabatini BL; De Vittorio M
    Neuron; 2014 Jun; 82(6):1245-54. PubMed ID: 24881834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and testing of low intensity laser biostimulator.
    Valchinov ES; Pallikarakis NE
    Biomed Eng Online; 2005 Jan; 4():5. PubMed ID: 15649327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice.
    Bryson JB; Machado CB; Crossley M; Stevenson D; Bros-Facer V; Burrone J; Greensmith L; Lieberam I
    Science; 2014 Apr; 344(6179):94-7. PubMed ID: 24700859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-scanning fiber-optic near-infrared beam led to two-photon optogenetic stimulation in-vivo.
    Dhakal KR; Gu L; Shivalingaiah S; Dennis TS; Morris-Bobzean SA; Li T; Perrotti LI; Mohanty SK
    PLoS One; 2014; 9(11):e111488. PubMed ID: 25383687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic Tools for Confined Stimulation in Deep Brain Structures.
    Castonguay A; Thomas S; Lesage F; Casanova C
    Methods Mol Biol; 2016; 1408():267-79. PubMed ID: 26965129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An implantable wireless optogenetic stimulation system for peripheral nerve control.
    Kang-Il Song ; Park SE; Myoung-Soo Kim ; Chulmin Joo ; Yong-Jun Kim ; Suh JK; Dosik Hwang ; Inchan Youn
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1033-6. PubMed ID: 26736441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of light absorption in tissue during infrared neural stimulation.
    Thompson AC; Wade SA; Brown WG; Stoddart PR
    J Biomed Opt; 2012 Jul; 17(7):075002. PubMed ID: 22894474
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.